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Some aspects of the construction of the geometrical conception
of the phenomenon of the Sun's shadows

Paolo Boero Rossella Garuti, Enrica Lemut Teresa Gazzolo Caries Llado
Dip. Matematica Istituto Matematica Applicata Scuola Elementare I.E.S. Sabadell
Un. Genova,Italy C.N.R., Genova, Italy Camogli , Italy Spain

a Giovanni Prodi

The persistence of "naive" conceptions relative to many natural phenomena in subjects that have
learnt in school a "scientific" interpretation for them, and their difficulty in using school-learnt
mathematical models to interpret non-trivial situations raise interesting issues for psychological
and educational research. This report analyses some aspects relative to the passage to a
geometrical conception of the phenomenon of the Sun's shadows from the "naive"
non-geometrical conceptions that most 9/11 year-old students have of this phenomenon.

I.Introduction

Mathematics plays an important role (in the history of culture and the intellectual maturation of

the individuals) for the construction of "scientific" conceptions of phenomena pertaining to a variety

of fields (from astronomy to genetics). "Scientific" interpretations based on mathematical models

learnt at school, however, appear fragile, and "naive" conceptions not only persist in common

culture, but resurface also in cultured people when, in difficult problem situations, mathematical

models are for some reason not serviceable. This happens in particular for the case of the geometrical

modelisation of the Sun's shadows (Boero, 1985). This is a phenomenon which lends itself
particularly well for the study of this subject. Many children manifest, in fact, deeply radicated

"naive" (non-geometrical) conceptions of this phenomenon even at a relatively advanced age (9 12

years). At this age the elementary geometrical modelization of the phenomenon is accessible at school

as it requires elementary mathematical tools. On the other hand, the phenomenon has been widely

used for dozens of years now in different countries in renovating mathematics teaching to introduce

different geometrical concepts and motivate geometric activities, and this offers a wide base of

experiences for further investigation (Barra & Castelnuovo, 1976; Berte, 1985; Lanciano, 1990;
Llada, 1984; Trompler, 1983).

The investigation dealt with in this report concerns the transition from non-geometric naive

conceptions to a "geometric conception" (i.e. a conception based on geometric aspects) of the
phenomenon of the Sun's shadows. In particular, this report wants to highlight some "variables" on

which the teacher may act to help the construction of the geometric conception. It is our hypothesis

that this construction requires the mastery of different geometric aspects of the phenomenon, which

are independent of each other from a cognitive point of view and not spontaneously acquired.

The mastery of the geometric aspects considered in this report, albeit necessary, does not

appear however sufficient to build at school a stable and deep geometric conception of the
phenomenon (see point 5.).

For What concerns the methods and the types of results obtained (both positive and negative),

we believe that the investigation dealt with in this report may be extended to the issue of the
construction of "scientific" conceptions relative to other phenomena.

3 3
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2.Methods
In the elementary geometric modelization of the phenomenon of the Sun's shadows, we may

discern the following aspects, forming three facets of the same model:

a) The "shadow pattern" representing a sunray touching the extremity of the object and identifying

the border of the shadow. In particular, if the object is a nail or a thin stick, the "shadow pattern" is a

faithful planar representation of a tri-dimensional reality (see below).
\ 0/ representation of the "shadow space"

shadow pattern (in the case of a stick)

b) The "shadow space", that' determines the visible shadow as its section with the surface on which

the shadow is projected. The shadow space is tri-dimensional in nature, and not directly visible in its

entirety. It is not easily representable by drawing, except in the case of the shadow of a nail or a thin

stick (surface enclosed by the "shadow pattern" - See above).

c) The relations between the length of the shadow and the angular height of the sun, and between the

height of the object and the length of the projected shadow. These are relations concerning the metric

aspect of the phenomenon and that, at an elementary level, may be taken into consideration in

qualitative terms (for instance: "if the sun is high, the shadow is short" ) or in quantitative terms (in

particular through the constant ratio between the heights of the objects and the lengths of the

projected shadows).

Our investigation dealt with these three geometric aspects of the phenomenon of the Sun's

shadows. We tried to verify the following hypotheses, resulting from past observations of the
behaviour of students and cultured adults in various problem situations relative to the Sun's shadows

and from a previous analysis of the tools necessary to successfully face them:

* An operative mastery of each of these three subjects is not spontaneously reached (requiring

therefore the mediating action of the teacher).

* An operative mastery of one aspect may be reached without necessarily requiring or implying

mastery in the others (cognitive independence).

* None of the three aspects is by itself sufficient to face problem situations that require either a

geometric interpretation or a qualitative or quantitative prediction about the phenomenon of the Sun's

shadows.

In order to verify these three hypotheses, we carried out systematic observations on classes

experimenting the projects of the Genoa Group and the Sabadell Group for the integrated teaching of

mathematics and sciences in primary and comprehensive school. In these projects the phenomenon

of the Sun's shadows is made object of extensive and in-depth didactic activities (that have extended

for some teachers well over fifteen years: see Belcastro, 1981; Llada, 1984; Boero, 1985). We have,

in particular, compared the behaviours of the students in grades IV, V, VI, VII where their didactic

routes dealt in depth, at the beginning, for a sufficiently long period; with only one of the geometric

aspects of the phenomenon mentioned above. In these classes, problem situations, suggested by

1.2
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previous difficulties met by the teachers and suitable to highlight the effects of the didactic choices

made, were planned, managed and observed. Some of these problem situations had also been
presented to cultured adults (primary school teachers following in-service training activities with us.

The observation was carried out by collecting texts and drawings by the students and the

adults and through discussions and interviews, aiming at determining the nature of the students'

non-geometric naive conceptions and clarify the role of the previously identified geometric aspects in

the transition to the geometric conception of the phenomenon of the Sun's shadows.

3.General review of the results of the observations carried out.
We will consider six problem situation and for each of them we will indicate the results of the

relative observations.

3.1: "Did you notice that on sunny days your body makes a shadow on the ground? Do you think

that the shadow is longer at 9 in the morning or at 12 noon? Why?". This question was presented to

grade IV students at the beginning of the work on the Sun's shadows(410 written answers were

collected) and to VI grade students within an initial diagnostic questionnaire (over 4000 written

answers collected from 1980 on).Results: For percentages of students reaching 59% at age 9 and
47% at age 11, the Sun's shadow is longer at II with explicit motivations of the type: "because the

Sun is stronger", "because the Sun hits more". Further interviews (beginning with the request to

"explain your answer" ) on smaller samples show that, in the majority of cases, this motivation
corresponds to a conception of the shadow as an "appendix of the object" (therefore belonging to the

object), whose length is controlled by the strength of the Sun. A typical statement is: "I answered at

I I because at l I the Sun is stronger, and so (....) my body makes a longer shadow because the Sun

hits more and gets a longer shadow out of me" (see also Boero, 1985).

In order to ascertain if the "shadow pattern" may be spontaneously acquired, after the initial

questionnaire we asked to eight grade VI classes: "Explain in a drawing how shadows are made". In

these classes, even most of grade VI children who had correctly answered the question above that the

"shadow is longer at 9"were not able to supply a graphic interpretation in terms of "shadow pattern".

The fact that the acquisition of the "shadow pattern" is not spontaneous seems confirmed by other

results also. Most of grade VI classes, after the experimental verification of the initial hypotheses

were asked: "Explain with a thawing why, when the Sun is high, the shadow is short and when the

Sun is low, the shadow is long". Less than 15% of the children are able to produce a drawing where

the "shadow pattern" is used to explain the dependence of the shadow's length to the Sun's height.

3.2. "Facing away from the Sun, we walk toward a wall. At one point we see that our shadows
begins to go up the wall. How do you explain this?" This question is asked after observing the

phenomenon. An exploratory investigation, carried out with individual interviews in three grade IV

and two grade VI classes at the beginning of the activities on the shadows, indicates that, for many

9-11 year old children, the shadows goes up "because it cannot squeeze against the bottom of the

wall", for others, it goes up "because it has its own length': for others again "because if it finds a

3 5
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wall, it tries to look like the person"(all in all, over half of the children manifests this type of
conceptions). Virtually none of the children refers to the "shadow space" or to the "shadow pattern".

Even the answers to this question bring out the conception of the shadow as an appendix of the object

that projects it, as well as the non-spontaneity of the conception of the shadow seenon a surface as a
section of the "shadow space". The same question, presented to V grade students that had already

carried out an extended activity on the shadow space only, gives very different results (more than half

the students refer to the "shadow space meeting the wall" in their answers). Lower (about 40%) are

the percentages of grade VI students that, after activities on the "shadow pattern" only are able to give

a correct interpretation of the phenomenon (mostly everybody refers to the "shadow pattern"; virtually

no child refers to the "shadow space").

3.3: The children look at the shadow of a long factory shed, while they are standing completely in

the shadow at about ten metres from the shadow's edge. They are asked: "Where and how must you
walk to see the Sun move like a cat from left to right on the roof of the shed?"The same question was

asked to primary school teachers during in-service training activities. The problem situation is

difficult; we have observed non-negligible percentages of success, with exhaustive motivations of the

correct answer (between 25 and 40%, according to the age) only if the question was preceded by

extended activities on the "shadow pattern". We also noticed that the activities on the "shadow space"

by themselves allow an exhaustively motivated answer only to the first part of the question ("where
do you need to walk )but not to the second part ("how do you need to walk"). The difficulty seems

to lay in the transition from the correct collocation in the shadow space to the identification of the
direction of the movement.

3.4: The children observe the shadow of a factory shed, with the Sun low, while they are in the sun

at about ten metres from the shadow. They were asked: "Where do you need to move to remain all in

the shadow?". We asked this question both to IV and VI grade students that had not yet carried out
activities on the shadows and to IV, V and VI grade students after extended activities on the shadows.

In both cases, if the activities did not deal with the shadow space, most of the children (over 70%)

suppose that "to be all in the shadow, it is enough that I enter in the shadow with my feet". Similar

results are obtained with the question: "What will happen if Mary walks on the shadow of the shed, at
less than a metre from its edge? Will she be all in the shadow or not?" The percentages of correct
answers pass from less than 10% to over 60% after performing activities on the shadow space.

3.5: 'Two boards with two nails of identical length are placed one in the yard and the otheron the
terraced roof of the school. How are the 'fans' of the shadows recorded at the same times of thesame
day?". The question is asked to grade V students after carrying out extended activitieson the shadows

(in particular, after extended activities on the "shadow pattern" but without activities on the shadow
space, or vice-versa). Over 60% of the students that worked mostly on the "shadow pattern"
answered that the 'fans' are different (with longer shadows on the terrace) and the exhaustively

motivated correct answers are less than 15%. Most of the students use the "shadow pattern" ina
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stereotyped manner, without realising that the distance of the Sun is enormously greater than the

difference of level of the two measuring points of the shadows (for further details, see Scali, 1994).

The percentage of exhaustively motivated correct answers increases instead to about 35% in the case

of extended prior activities on the shadow space. The light investing the two points of observation is

often represented with one single "light beam".

3.6: Determination of the height of objects that may not to be reached for direct measurement, using

the length of their shadow: In Garuti & Boero (1992), a teaching experiment is described during

which the students go from an initial prevalence of additional-type reasoning to multiplicative-type

reasoning (thanks to the teacher-led discussion and verification of the strategies as they are produced

by the students and to the reference made to the "shadow pattern"). The investigation proves, in our

opinion, that the relation of direct proportionality between height of the objects and length of the

projected shadow is not spontaneously acquired, and that its acquisition may make use of the

"shadow pattern". In a subsequent teaching experiment in other two grade VI classes, it was also

noticed, however, that the students may reach that proportional reasoning also via other ways,

without using the "shadow pattern".

In general, for what concerns aspects a), b) and c) considered at point 2, the observations

seem to indicate that:

* Mastery of each of the aspects is spontaneously acquired only by a very small percentage of

students (see the situation described at 3.1 for a), the situation described at 3.4 for b) and the situation

described at 3.6 for c)).

* Mastery of each of the aspects may be acquired independently from the others, without effects on

the spontaneous acquisition of the others (see situations 3.2., 3.3., 3.6.).

* Each of the aspects is necessary to successfully approach some of the problem situations that have

been considered: In particular, a) appears necessary for the situation described at 3.3; b) for the

situation described at 3.4 and, obviously, c) for the situation described at 3.6.

A fact that appears clear from the observation we made is that, even if each of the three

considered geometric aspects may be the object of a separate activity, does not require the others and

does not produce the acquisition of the others, it may be useful to weave the work on the three

aspects together (for time reasons, if nothing else) thus trying to recompose the unity of the

"geometric vision" of the phenomenon. As a matter of fact, the qualitative relationship between the

height of the Sun and the length of the shadow may be used to construct the modelization of the

Sun's rays with straight lines (using the graphical products of some students: see 3.1.), the mastery

of the shadow space may be linked to its sections with planes containing the Sun ("shadow pattern"),

and the "shadow pattern" may turn out to be quite useful to arrive to a geometric model of the

proportional relation between the heights of the objects and the lengths of their projected shadows.

Nevertheless this does not seem to necessarily produce an integration of the three aspects: the

drawings reproduced below ( situation 3.2.) are frequent also in classes where the activities on the

three aspects have been performed together in the way described here.
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one time and onelhalf

Although facets of a same geometric model, the three aspects considered seem to correspond to

different ways of seeing the phenomenon of the Sun's shadow. Also taking into account some

interviews we made, they seem to correspond, respectively, to the idea of a dynamic relationship

between the position of the Sun and the edge of the shadow, to the idea of shadow as a "lack of light"

(like in the second drawing), and to the idea of quantitative regularity (obvious in the third drawing).

4. Behaviour of students and adults in a difficult problem situation.
We considered two variations of a same problem situation:

(A) Symbolic situation: The following drawing is reproduced on a sheet of paper, with the caption:

'The drawing represents in section a situation of shadows made by the Sun. A person is coming
close to the low wall and is represented with his shadow. On the other side of the low wall is a deep
hollow space and then another high wall. The drawing shows the area of the hollow space that
remains in the shadow". The assignment is: "Draw the person represented in the picture and where
will his shadow be if this person moves forward about three steps".

(B) Real situation: In a situation similar to that schematised above, with the Sun behind, the teacher

moves slowly towards the low wall and asks the students to predict what will happen to the shadow.

Mostly everybody will say that the shadow will move up the low wall. The teacher starts moving

again. When the shadow is at about two thirds of the height of the low wall, he stops and asks the

students to write what will happen to the shadow if he should move closer to the wall. Once the

answers have been collected he asks those who did not do it to illustrate their answer with a drawing.
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These two situations have been presented to V, VI and VII grade classes and to primary

school teachers during in-service training activities after some months of work on the shadows

(observation of the phenomenon of the shadows, various types of verbal and graphic description of

the shadows of people and objects at different times of the same day and in different days of the year)

or after short activities of observation of shadows. With different percentages according to the

classes, the age of the students and the activities carried out previously, the following types of
predictions have been recorded (together with other non-pertinent answers and non-answers):

PRI) 'The shadow of the body appears on the wall in front, above the shadow of the low wall"

PR2) 'The shadow ends up in the darkness of the hollow space" or 'The shadow is not long enough

to go up the wall in front"

The following table summarises the distribution of the percentages of these answers in relation

to the situation (A or B), the type of previous activity on the phenomenon of shadows ( on the

"shadow space", or on the "shadow pattern", or on all geometric aspects, or some introductory

observations only), the type of subject being interviewed (grade V and VI students or primary school

teachers). All percentages refer to a group of at least 40 people (for the students, at least two classes).

only shadow space

only shadow pattem

all aspects

only some observations

STUDENTS
situation A situation B

PRI PR2 PRI PR2

ADULTS
situation A situation B
PRI PR2 PRI PR2

14% 41% 9% 50% 18% 31% 16% 37%

46% 27% 31% 38% 57% 11% 48% 20%

45% 24% 32% 36% 55% 9% 49% 22%

11% 58% 8% 64% 17% 33% 15% 42%

From the table we may gather the following indications:

- Generally speaking, the results in situation A are better than those in situation B. This is particularly

true for the students and the adults that have carried out extended activities on the "shadow pattern".

The "shadow pattern" is not spontaneously used (by those not familiar with it) even in situation A,
which would appear to suggest an easy geometric construction of the solution.

- The "shadow pattern" appears to be necessary but not sufficient to successfully approach the two

problem situations. As a matter of fact, only those groups with an extended working experience with

the "shadow pattern" display significant percentages of PRI predictions. Even in these groups,
however, many are not able to successfully approach the two problem situations (note in particular

that only in the adult group and only in the situation A, there is a success percentage above 50%).

- A previous performance of activities on the "shadow space" and/or the proportionality between

height of objects and length of projected shadows does not seem to affect the percentage ofsuccess;
- The analysis of the percentages of PR2 answers (confirmed by the analysis of some interviews

gathered among those formulating this prediction) confirms the fact that non geometric "naive"
conceptions persist even after extended activities on the geometric aspects of the phenomenon of the

shadows and shows that these conceptions surface again even at an adult age.
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5. Discussion
In consideration of the behaviours described at points 3.3 and 5, and in particular the fact that

even the majority of those students that had carried out extended activities on all geometric aspects of

the phenomenon of the shadows dealt with in this report, do not succeed in passing these tests, we

may ask ourselves what further factors are involved in the transition to a geometric conception of the

shadow capable to approach tests similar to those described here.

Generally speaking, it seem that one of the factors is the quality of the activities carried out by

the subjects of the investigation, and especially the degree of interiorisation of spatial relations. These

relations remain for many people (even adults) confined to the space of the representation on a sheet

of paper and are not connected to the space of the phenomenon nor to the imagination of the
phenomenon. In general they are thus unable to use autonomously the representation on paper to

correctly approach the problem (see, as well as 3.1, also B) of 4.). In particular, the connection
between the "shadow pattern" and the phenomenon appears to be very tenuous (see Situation 3.5.),

and this may be interpreted with the fact that the "shadow pattern" is really a reduction to the
microspace of the paper of a situation placed in the macrospace (see also Berthelot & Salin, 1992;

Scali, 1994). It appears that the arguing activities relative to the phenomenon of the Sun's shadows

also are important for the interiorisation of spatial relations, as well as for the development of skills

for the deliberate control and direction of thought processes (necessary in particular to perform the

connection between the "shadow pattern" and the phenomenon). As a matter of fact, some good

results have been obtained in activities as demanding as those described above in those classes where

the teachers had requested accurate verbal descriptions of different aspects of the phenomenon of the

Sun's shadows, accurate comparisons of hypotheses, and class discussions to validate the
hypotheses produced (anticipating the results of experimental verifications).

It would appear opportune to perform further in-depth investigations on these subjects so as to

obtain a more complete.and organised picture of which variable intervene (beside those of a geometric

type considered in this report) in the transition to a coherent and stable geometric conception of the

phenomenon of the Sun's shadows.
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TOWARDS THE DESIGN OF A STANDARD TEST FOR THE ASSESSMENT OF

ItaSnIDEREASimar

Angel Gutierrez and Ade la Jaime
Dpto. de Diclactica de la Matematica. Universidad de Valencia. Valencia (Spain)

Abstract. In previous publications, we outlined a theoretical framework for the design of tests
to evaluate students' Van Hiele level of thinking and for the assignment of Van Hiele levels to the
students. Based on this framework, we present here a test aimed to assess students in Primary and
Secondary Schools. The subject area of the test are polygons and other related concepts. The test is
integrated by open-ended super-items, each one of them having several related questions dealing
with the same problem. In this paper we describe the items, analyze the structure of the test, and
present the results of the administration to a sample of 309 primary and secondary students.

Introduction,

A constant in the research on the Van Hiele Model of Geometric Reasoning over the
years is the expressed need of an assessment instrument fitting the usual requirements of
reliability and validity, and also fitting the requirement of easy administration in a short
time to big samples. Unfortunately, the third requirement seems to be incompatible with
the previous ones. Clinical interview is considered the most valid and reliable technique,,
but it can hardly be used with medium sized samples. Written tests do not have this
inconvenience, but it is usually harder to verify their reliability and validity, since written
answers are poorer than oral answers. Some attempts have been done in the direction of
building written tests to assess the Van Hiele levels but, unfortunately, they have not been
successful enough (Mayberry, 1981; Usisldn, 1982; Senk, 1983; and Crowley, 1989).

We are working in a research program, a part of which is presented in this paper,
whose main objective is to build a written' test with a structure as close as possible to semi-
structured clinical interviews. The research is divided into three related parts:

- Definition of a model for the evaluation of tests and assignment of Van Hiele levels
(Gutierrez, Jaime, Fortuny, 1991 and Gutierrez et al., 1991): The continuity of the Van
Hiele levels has been showed by lots of students' answers. Then we proposed a method to
assign to students a degree of acquisition of each level, mirroring the reality that most
students use a level of thinking or another depending on the task they are solving.

- Identification of a framework for the design of tests to evaluate students' levels of
thinking (Jaime, Gutierrez 1994): The reasoning of each level is characterised by several
key processes or abilities, so a balanced and valid test should assess everyone of them. On
the other side, most tasks can be answered from several levels of thinking, so students'
level of thinking is determined by their answers, not by the statements of the tasks. Then,
researchers should consider the range of possible levels of answer to each item of a test.
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Furthermore, this helps to obtain a reasonable amount of items assessing each Van Hie le
level without the inconvenience of a long test taking too much time to be answered.

- Design of a test to assess the Van Hie le level of reasoning of students in Primary,
Secondary, and University. In this paper we present results of this part of the research.
Namely, we describe and analyze a test made of open-ended items based on polygons and
other related concepts, and present the results of the administration of this test to students
from 6th grade of Primary to the last grade of Secondary. Previous versions of this test
were also administered to university students (preservice teachers).

To conclude this introduction, just to mention that we consider Van Hie le levels 1
(recognition), 2 (analysis), 3 (classification), and 4 (formal deduction).

Description of the Test,

Each Van Hiele level is integrated by several key processes of thinking so, for a
student to attain a certain level, the student should show mastery in all the processes
characteristic of this level. These processes are Oaime, Gutierrez, 1994):

Identification of the family a geometric object belongs to.
Work with the Definition of a concept, in two ways: To use a known definition,

and to state a definition for a class of geometric objects.
Classification of geometrical objects into different families.
Proof in some way of a property or statement.

The table below summarises the key processes characteristic of each Van Hiele level
1 to 4. The "--" mark means that this process is not a part of the reasoning of the level.
Then, any test designed to assess the Van Hiele levels of thinking should have items
evaluating every process of each level.

II Identification Definition Classification Proof
Level 1 .1 J (State) 4
Level 2 4 -4 (Use & State) q 4
Level 3 -4 (Use & State) NI 4
Level 4 -4 (Use & State) .1

For several years, we have piloted and improved a set of paper and pencil items.
Usually, pilot trials of the items were followed by clinical interviews of some students, to
check the reliability of their written answers. The final result in the subject area of
polygons is the test we describe below. It is integrated by 8 open-ended items, each one of
them having several questions. When evaluating a student's answers, we do not consider
each answer independently, but the answers to all the questions in the same item or
section. In this way, we can have a clearer picture of the student's way of reasoning, and
we can judge inconsistencies, contradictions, etc. among different answers. These are the
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items in the test (due to the limited space, the text of some items is shortened):
Item 1. -Write a P on the polygons, write

an N on the non-polygons, write a T
on the triangles, and write a Q on the

2

1 0
- Write the numbers of the figures which

quadrilaterals. If necessary, you may
write several letters on each figure.

A9are not polygons and explain, for
each of them, why it is not a polygon.

- The same questions for figures which are triangles, and figures which are quadrilaterals.
Is figure 8 a polygon? Why? Is figure 2 a triangle? Why?

Item 2. - Write an R on the regular

irregular, a V on those that are
concave, and an X on those that are > 4D
polygons, an I on those that are

convex. If necessary, you may write 5

several letters on each figure.
For polygons 2, 4, 5, and 7, explain your

choice of letters or why you did not write any letter.
Item 3. A) Write all the important properties which are shared by squares and rhombi.

Write all the important properties which are true for squares but not for rhombi.
Write all the important properties which are true for rhombi but not for squares.

B) - The same questions as in A) for equilateral triangles andacute triangles.
Item 4. A) - You can see a shape in figure -a- (a rhombus).

Make a list of all the properties that you find for this
shape (you can draw to explain the properties). .

B) The same question for shape in figure -b-.
Item 5.1.- Recall that a diagonal of a polygon is a segment

that joins two non adjacent vertices of the polygon. Flow

many diagonals does an n-sided polygon have? Give a proof for your answer.
Item 5.2.- Complete the three following statements (you can draw if you want):
In a 5-sided polygon, the number of diagonals which can be drawn from each vertex is

and the total number of diagonals is
In a 6-sided polygon, the number of diagonals which can be drawn from each vertex is

and the total number of diagonals is
In an n-sided polygon, the number of diagonals which can be drawn from each vertex is

Justify your answer.

- Using your answers above, tell how many diagonals an n-sided polygon has. PrOve your
answer.

a b -
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Item 6.1. Prove that the sum of the angles of any acute triangle is 180°.
Item 6.2. Recall that, if you have two parallel straight lines cut by

another straight line: All the acute angles marked in the figure
(A, G, C, E) are equal. All the obtuse angles marked in the
figure (B, H, D, F) are equal.

Taking into account the figure on the right (line r is parallel to the
base of the triangle) and the properties mentioned above,
prove that the sum of the angles of any acute triangle is 180°.

Item 6.3. Here is a complete proof that the sum of the angles of any acute triangle is
180°. Read it and try to understand it.

The sum that we are supposed to calculate is M + R + T (figure 1).
Construct a parallel to the base of the triangle through the opposite vertex R (figure 1).

Extending a side, we have two parallel lines cut by a transverse, so T = t (figure 2).
Extending the other side we have two parallel lines cut by a transverse, so M = m

(figure 3).

Therefore, M + R + T = m + R + t = 180°, as the latter three angles form a straight angle
(figure 4).

Figure 1. Figure 2. Figure 3. Figure 4.

You have seen above. a proof that the sum of the angles of an acute triangle is 180°. Is it
true that the sum of the angles of a right triangle is 180°? Prove your answer.

- Tell how much is the sum of the angles of an obtuse triangle: Exactly 180°, more than
180°, or less than 180°. Prove your answer.

Item 7. A) - Prove that the two diagonals of any rectangle have the same leng h.
B) - Recall that the perpendicular bisector of a segment is the line

perpendicular to that segment that cuts it through its
midpoint (line r is the perpendiculqr bisector of segment
AB). Prove that any point of the perpendicular bisector of a A

segment is equidistant from the endpoints of the segment.
Item 8. Usually a parallelogram is defined as a quadrilateral having two pairs of parallel

sides.

Could a parallelogram also be defined as a quadrilateral in which the sum of any two
consecutive angles is 180°? Justify your answer: If your answer is affirmative, prove
that both definitions are equivalent. If your answer is negative, draw some example.
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Usually all the questions of an item are presented in the same sheet. However, each
section in items 5 and 6 is presented in a different sheet, and students are not allowed to
"go back" to correct or complete answers in previous sheets after they have moved to the
second or third section. In both items, the first section just states a property to be proved;
then, the second and third sections provide some hints to help students to understand and
complete the proof. In this manner, we allow more able students to complete the proofs on
their own, and less able students to work on the problems with some help and to produce
some kind of answer, in a way similar to the procedure used in clinical interviews, were
the researcher, when necessary, guides the student with a hint, comment, question, etc.

The table below summarizes the key processes evaluated in each item and the
possible Van Hie le levels of students' answers. It supports the validity and reliability of
the test, since i) every process is considered at least by an item, and ii) for each level of
thinking, there are several items that can be answered by students in that level. In Spain,
students in upper Primary and Secondary are likely acquiring thinking level 2 or 3; for this
reason we have included in the test a high number of items assessing these levels.

Item
Van
1

Hie
2

le levels
3 4 Identif.

Definition
Use State Classif. Proof

1

2

3

4

5.1, 5.2

6.1

6.2,6.3
7

8

This test was administered to students in upper Primary (grades 6 to 8) and
Secondary (grades 1 to 4) (ages from 11 to 18). To optimize the administration, we did not
present the eight items to all the students, but we took into account the particular
characteristics of students in different grades: Since primary school students were most
likely reasoning in levels 1 or 2, we reduced the number of items evaluating levels 3 and 4
in their test. In the same way, we reduced the number of items evaluating levels 1 or 2 in
the test for upper secondary school students. On the other side, the mathematical content
of an item may increase its difficulty in certain grades, so we avoided items whose
contents likely still had not been studied in some of the grades 6 to 8. Then, we
administered three different sub-tests:

A) The test for students in grades 6, 7, and 8 had items: 1, 3, 4, 6, 7.
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B) The test for students in grades 9 and 10 has items: 1, 2, 3, 5, 6.

C) The test for students in grades 11 and 12 has items: 1, 3, 5, 6, 8.

All the test have five item, three of them being the same items, to guarantee the
possibility of comparison of results, and the other two items selected depending on the
expected students' level of thinking and their knowledge of geometric facts. Tests A and B
do not assess the process of statement of definitions. Although it may be considered as a
weakness of these tests, in pilot trials, we noticed that questions asking to compare
definitions or to build a definition (i.e. a list of necessary and sufficient properties) from a
list of given properties were meaningless for most students in those grades. Then, we
decided to exclude this kind of questions, to have a shorter and more efficient test.

Results of the Administration of the Tests

The test was administered to 309 students. The
table on the right shows the number of students in each
grade. The answers were codified according to the
method of levels and types of answers defined in
Gutierrez, Jaime, Fortuny (1991), and a vector with 4
percentages was assigned to each student, showing the
student's acquisition of Van Hiele levels 1 to 4. Both
researchers made independent assignations of level and
type to each answer, then both assignations were
compared, and the disagreements were analyzed. Some times this analysis resulted in an
improvement of the marking criteria, and a new marking of some answers if necessary.

In order to make more meaningful the results of the evaluation of the tests, the
numeric scale of percentages of acquisition of a Van Hiele level can be translated into a
qualitative scale of degrees of acquisition of the level, as follows:

Grade Students

6th Primary 34

7th Primary 62

8th Primary 83

1st Secondary 35

2nd Secondary 36

3th Secondary 28

4th Secondary 31

No acquisit. Low acquisit. Intermed. acq. High acquisit. { Complete acq.

0% 15% 40% 60% 85% 100%

The vectors of the degrees of acquisition of the four levels provide information about
the behaviour of every individual student. Analysing those data, we have identified
several profiles, that correspond to different styles and qualities of reasoning. The table in
the next page presents the most significant of such profiles and the percentages of
students having each profile (for instance, in CHISL, C stands for complete acquisition of
level 1, H for high acquisition of level 2, I for intermediate acquisition of level 3, and SL for
low or null acquisition of level 4).
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Profiles 6th 7th 8th 1st 2nd 3rd 4th
C C I,H SI 0 0 1,2 0 5,6 3,6 12,9
C H I SL 0 0 0 0 5,6 3,6 9,7
C H SI. N 0 4,8 4,8 0 0 25,0 12,9
C I SL N 0 3,2 10,8 11,4 5,6 7,1 25,8
C SL SL N 26,5 43,6 59,0 17,1 44,4 42,9 22,6
H SI SI, N 20,6 9,7 12,1 28,6 26,8 0 0
I N N N 29,4 8,1 7,2 2,9 0 14,3 0
L SL N N 20,6 25,8 2,4 34,3 2,8 0 0
N N N N 2,9 4,9 1,2 0. 0 0 0

An evolution in the students' kind of reasoning along the grades can be observed:
The higher the course, the bigger the number of students showing better profiles of
reasoning, with the exception of 1st and 2nd grades of Secondary.

It is also interesting to analyze the relationship between the results of students in
different grades. Next chart shows the means of the acquisition of each Van Hiele level by
the students in each grade, so it provides with a global picture of the differences from
students in different grades. Some conclusions can be drawn from both table and chart:

100

80

60

40

20

0

86th Prim.
07th Prim.
m8th Prim.
11111st Second.

in 2nd Second.
m 3rd Second.
IS 4 t h Second.

Level 1 Level 2 Level 3 Level 4

Most students had a high or complete acquisition of level 1. There is a progress in
the acquisition of this level along the Primary grades, and also along the Secondary
grades. However, it is noticeable the reduction of the acquisition of this level in the first
grade of Secondary. A reason for such reduction may be that some students in this grade
had not enough time to complete the test, since 8 students (23% of the group) did not
answer the last item in the test (item #3), and half of them neither answered the previous
item (#2). Both items assess levels 1 and 2. The influence of this problem in the results of
level 1 is rather important since only three items evaluate this level, but its influence in the
results of level 2 is smaller because it is assessed by all the items in the test.

Students in 7th grade of Primary and 1st, and 2nd grades of Secondary had not
completely acquired the first level, although they showed at the same time a low
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acquisition of level 2. In the same way, students in the upper grades of Secondary showed
an intermediate acquisition of level 2 and also a certain acquisition of level 3. One of the
main characteristics of the Van Hie le Model is the hierarchy of the levels (a student is
supposed to begin the acquisition of a level only after s/he has completed the acquisition
of the previous level), but the reality of the teaching of mathematics is that often students
are being taught in the higher level of reasoning, and teachers force them to answer
according to that level. The result is that students are not allowed to complete the
acquisition of the lower level but, sometimes, they acquire practice, although only a few,
in the higher level. However, the phenomenon of "reduction of level" has to be taken into
consideration (Van Hie le, 1986).

Only 17 students in the sample had an intermediate or better acquisition of level 3,
and only 7 students showed a low or intermediate acquisition of level 4. So, most Spanish
students leave the Secondary School having a low or null acquisition or level 3, i.e. almost
completely unable to make any kind of mathematical deductive reasoning (neither formal
nor informal). These poor results may be a consequence of the usual way of teaching
Mathematics in Secondary School, where many teachers emphasizess formal proofs (level
4) when, as we see in the previous graph, students are reasoning only in level 1 or 2.
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INVESTIGATING THE FACTORS WHICH INFLUENCE THE CHILD'S

CONCEPTION OF ANGLE

Sandra MagMa
Mestrado em Ensino de Matematica

PUCISP - Brazil

Mis paper summarises the main results of a PhD thesis which aimed to investigate the
factors which influence the child's conception of angle by analysing children's
responses in a variety of situations and under different conditions. Theories from
psychology and mathematics education were interwoven to form a basis for designing
the study and the interpretation of the results.

This study was guided by constructivism and authors who follow this position. In this way,

from Piaget (Piaget et al 1968, Fourth 1969, 1977) I embraced the perspective in which knowledge

can be understood from two viewpoints: as describing things -- figurative knowledge -- which

initially arises from imitation, starting the symbol formation, and as operating on a thing -- operative

knowledge -- which is concerned with the transformation of reality states. It involves a logical
thought. The 'figurative' aspects of symbolic acquisition and their usage, including language, are

subordinated to the child's 'operative' aspect of knowledge.

From Vygotsky's theory (1962) I borrowed two main ideas. The first is the zone of Proximal

development, which allows children to reach higher stage (level) with the help of 'others'. The

second is his distinction between spontaneous and scientific concepts and how both are elements of

the same process, i.e., of the concept formation. They are continually influenced by each other. The

spontaneous concept arises from the child's everyday life experience, whilst the scientific concept is

usually acquired at school, with the help of the teacher.

Vergnaud (1987, oral communication) makes a similar distinction between spontaneous

(called 'ordinary') and scientific concepts, which illuminate the understanding of the results of this

research. He argues that ordinary concept has much to do with a person's level ofcompetence. This

competence is shown by the operational invariants which emerge from schemes acquired from a

child's interaction with the situation. Thus the operational invariants will constitute theorems-in-

action as well as the theorem-in-conception. He emphasises that ordinary and scientific concepts can

co-exist in harmony, depending on the situation in which each concept, or combination of concepts,

might be applied. Thus, it is essential to confront a child with problem solving which puts him/her in

a position of understanding the meaning of the concept .
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Another important idea which was also helpful for the interpretation of my findings comes

from Nunes (1992, 1993). She argues that the representational systems influence the functional

organisation of the children's activities However, these systems may not be able to influence the

functional organisation without the support of particular cultural sign systems . This means that the

same children may perform differently when carrying out the same function supported by different

systems.

Finally, from Van Hie le (1986) I embraced the argument that a context involves many

different symbols, and any given symbol is not restricted to one context only. For Van Hide, the

starting-point of symbols is an image, in which the properties and relations are projected. Through

learning, the symbol loses its peculiarity of image and achieves a verbal significance. Therefore, the

symbol becomes more useful for operations involving thinking.

The design of the research was built up based on the main issues of the above theories, from

which three fundamental questions arose:

1) Considering Piaget's and Vygostsky's developmental perspectives, considering also Vygotsky and

Vergnaud's ideas that firstly, a concept emerges spontaneously and thus is transformed into a

scientific one and, still having in mind Van Hie le's considerations about the learning process, I

consider how the angle is understood by a child spontaneously, and to what extent this understanding

varies with age and schooling?

2) From Van Hie le' statement about the importance of presenting a content inserted in a paper

situation plus Nunes's consideration about the influence of different representational systems over

the functional organisation of people activity, my question is: does a child have a different perception

of an angle in different situations?

If so, and thinking in terms of children' semiotic function, a finally ask:

3) How do different situations give meaning to the child's understanding of an angle?

THE STUDY

The research was carried out in Recife, a city situated in the north-east of Brazil. The sample

was comprised fifty four students divided on the basis of school levels into nine groups of six, with

the youngest group consisting of 6 year-old pre-school children and the oldest 14 year-olds in the

last class of elementary school. In Brazil, school is divided into elementary school (from first to the

fourth class) and middle school (from fifth to eighth class). In the elementary school children have

only one teacher who is responsible for all central subjects in the curriculum including mathematics.
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In contrast to the earlier years, children in the middle school have different teachers for different

subjects. In Brazil the teaching of geometry occurs differently from the elementary to the middle

school. As far as the curriculum relevant to this study is concerned, children have some contact with

the topic of angle in the elementary school -- although this is largely confined to 'playing' with

shapes. More analytical activity including angular measurement is not introduced until the middle

school. For this reason, the sample was divided into two groups: Group 1, composed of 6-10year-

old children from early elementary school, and Group 2 which was made up of 11-14 year-old

children from middle school.

The study included 92 activities, i.e., children were asked 92 times to give an answer in three

separate sections. The activities, which were the central point of the research, were elaborated

according to six interwoven sets of variables, as described and defined, in summary , in the next

figure:

It refers to the way the angle 'appeared' within
an activity. The angle could be categorised either
as dynamic or static from a priori analysis of
requerements otthe activity.

It was approached by
gtouping the activities
into 7 clusters-according
the value of the angle:
Group 1: less than 900
Group2: 9O0 Grotto 3:1000
Group4:5400,Group5:
Group 6: wider than 720
Group 7: Comparing 4 or

6 figures with
different angle
values, pesened
to the child at
the same time.

It refers to the way
children were asked to
solve the activities.
There were 3 conditions:
Recognition, action and
articulation.

PERSPECTIVE

SIZE OF
ANGLE

SETTING

ACTIVITIES

CONTEXT

CONDITION

ARENA

It refers to models of
environments, defined
by different representa
tional systems. There
are 3 settings:
Everyday, Logo and
paper and pencil(p&p)

This is defined here
as a situation which
allows a person to
experience a given
content. A priori it
is the signifier of
the activity, while
a posteriori it is the
signified given by a
person in a specific
situation. The study
included 3 contexts:
Rotation, navigation
and comparison

This is the concrete material, or an objective situation,
where the activities were carried out. There were 6 groups
of arenas: map, 2 angles, 4 angles, spirals, arrow and watches

Figure 1: The Universe of the Study

I now shall briefly give some examples of how activities were carried out:
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Example 1: from the map arena

Recognition: Did you turn 90° at any point along route A? Where?
Did you turn 90° at any point along route B? Where?

Articulation: Explaining your answer

In this example, the activities, beside the recognition and articulation conditions as Well
as group 2 of the size of the angle, were using the dynamic perspective, for all 3 settings,
experienced the navigation context.

Example 2: from the watch arena
Action: Where would the minute hand be half an hour later?
Articulation: Explain how did you come to your answer

This example shows an activity related to: group 3 .of the size of angle variable, action
and articulation conditions, inside of everyday and Logo settings, experiencing the
rotation context, in a dynamic perspective.

Example 3: from the 4 angles arena
Recognition: Which of the angle is the largest value?

Which of the angle is the smallest value?
Articulation: Explain why you came to your answer

This example shows an activity related to group 7 of the size of angle variable,
recognition and articulation conditions, inside of paper and pencil (p&p) and Logo
settings, experiencing the comparison context, in a static perspective.

RESULTS

Next Tables below show the number of incorrect answers given by children in both Group 1 (from 6

to 10 year-olds) and Group 2 (from 11 to 14 year-olds) over the 92 activities. The tables will take

into account: contexts (Table I), settings (Table 2), arenas (Table 3), conditions (Table 4), and size

of angle (Table 5)

OF INCORRECT RESPONSES 3 CONTEXTS
Ares NAVIGATION ROTATION COMPARISON

6 89.39 76.67 80.30
7 81.06 64.6 70.71

ELEMENTARY 8 77.27 30 64.65
SCHOOL 9 81.06 28 62.12

10
74.24 19.44 55.55

Arent e 80.60 43.74 66.67

11 82.61 20 49.48

12 81.16 16 44.79
MIDDLE 13 66.67 6.67 23.44
SCHOOL 14

45.65 0 14.06

Aver e 71.27 10.67 32.94

Table 1: The result of children's performances in the 3 context
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% OF INCORRECT RESPONSES
3 SETTINGS

1

EVERYDAY
2

PAPER & PENCIL
3

LOGO
6 75.22 90.38 71.84
7 68.02 75 67.24

ELEMENTARY 8 47.75 69.87 49.42
SCHOOL 9 54.05 68.59 43.1

10 46.4 51.28 40.23

Average 58.29 71.02 54.37
II 48.15 60.90 40.23
12 43.52 51.92 31.61

MIDDLE 13 32.41 42.95 21.84
SCHOOL 14 21.76 31.41 8.04

Average 36.46 46.79 25.43

Table 2: The result of children's performances in the 3 settings

% OF INCORRECT RESPONSES
2 CONDITIONS

RECOGNITION
6
7

ELEMENTARY 8
SCHOOL 9

10

Total

11

12

MIDDLE 13

SCHOOL 14

Total

81.42
73.77
65.57
66.12
57.92

68.96
61.94
53.61
43.33
29.72

47.15

2

ACTION
72.58
61.83
32.79
32.26
22.04

24.73
19.98
10.21

1.61

14.13

Table 3: The result of children's performances in the 2 conditions

% OF INCORRECT RESPONSES
6 GROUPS OF ARENAS

Ages
I

MAP
2

WATCH
3

2 ANGLES
4

4 ANGLES
5

ARROW
6

SPIRAL

6 78.28 74.44 78.43 100 79.41 72.22
7 72.73 57.78 66.67 95.83 73.53 63.89

ELEMENTARY 8 65.66 27.78 60.78 95.83 41.18 63.89
SCHOOL 9 67.68 34.44 63.72 95.83 35.29 36.11

10 59.59 21.11 58.82 70.83 25.49 33.33

Total 68.79 43.11 65.68 91.66 50.98 53.89

11 73.44 22.22 47.06 66.67 28.43 30.55
12 61.98 6.67 43.14 70.83 27.45 38.89

MIDDLE 13 59.37 4.44 29.41 37.50 12.74 13.89
SCHOOL 14 44.27 0 11.76 25 0.98 16.67

Total 59.76 8.33 34.25 50 17.4 25.02

Table 4: The result of children's performances in the 6 arenas
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% OF INCORRECT RESPONSES
7 CLUSTERS

Ages
I

< 90
2

90
3

180
4

540
5

720
6

> 720
7

. 4 e 6
ANGLES

6 85.08 85.9 75 79.17 75 72.22 94.4
7 70.17 83.33 62.12 79.17 58.33 63.89 100

ELEMENTARY 8 68.42 75.44 37.12 45.83 8.33 63.89 80.55
SCHOOL 9 69.30 79.82 39.39 20.83 0 36.11 88.89

10 62.28 72.81 29.54 20.83 4.17 33.33 69.44

Total 71.05 79.30 48.63 49.17 29.17 53.89 86.67

I I 64.03 65.79 38.64 29.17 8.33 27.78 66.67
12 57.90 64.49 29.54 25 12.5 38.89 55.55

MIDDLE 13 46.49 54.38 20.45 .33 0 '13.89 30.55
SCHOOL 14 20.17 28.07 17.42 0 0 16.67 16.67

Total 47.15 53.18 26.51 15.62 5.21 24.31 46.36

Table 5: The result of children's performances according to the size of the angle

DISCUSSION

Taking into account the six variables of the study, the discussion will be ,placed in terms of

issues:

Development: The results pointed to the presence of the developmental factor as influencing the

children's performances. A progressive increase, in the averages of correct answers, was noted as

the child matured (from 6 to 14), although this difference was less in the performances of 8 to 12

year old children. However, these differences were not very marked and age did not necessarily lead

to improvement, as shown the difference between the results of 10 and 11 year-old children. I shall

take two points into consideration. Firstly, 10 and II age-group children were classified in the same

sub-group. Secondly, the difference in favour of the 10 year-old children was small. Therefore I do

not consider that this divergence refutes the developmental factor. Instead I understand that this

difference shows that there were other factors influencing children's performances.

School: I came up to state that school was one of the responsible for the children's performances

based on the evidence that middle school children were able to solve at least half of the activities,

whilst among the elementary school children this only occurred with the 10 year-old children. On the

other hand, the children's results were not wholly consistent. In fact, younger age -group, children

presented better performances than older ones depending on which value of angle was involved in
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the activity. For instance, 12 year-old children made more mistakes than the 9 year-olds in those

activities which involved angles of 7200 and wider (clusters 5 and 6 respectively).

Angle Perspective: The quantitative findings evidenced a diminution, from 8 to 14 year-old children,

with regards to the number of the correct solutions in activities inserted in the dynamic perspective

of angle151. Moreover, the 12, 13 and, above all, the 14 year-old age-groups, as well as 6 and 7 year-

old children, showed better performances in the static activities. Why middle school children were

better in this perspective while the elementary school children were better in the dynamic

perspective: did the middle school children have difficulty in perceiving the movement of figures? In

fact, when the qualitative data are taken into account we note that children between 8 and 14

referred quite often to the turns of the figures, mainly when the activities in the everyday and Logo

settings. The same was not noted among 6 and 7 year-old children, who referred to this category

very little in comparison to the older age-groups. Moreover these younger age-groups continued to

used the static reference as much as the older children. This is an evidence that for younger children

were concerned with the figure itself as it was in a given moment, i.e., before or after it had moved --

children were only using the figurative aspect of knowledge.

Setting: The majority (and in some age-groups, all) children presented their best performances in the

Logo setting. This result was true for all the age-groups, independent of school level. My first

explanation for this result does not relate to any of the theories mentioned, but to the children's

motivation to play with Logo, since the computer had never been used before by these children.

Context: The great majority of the children presented their best performances when the activity was

part of the rotation context. In contrast, a large number of children could not solve activities in the

navigation context. The first fact to be taken into account from this result is the mathematical

properties involved in the contexts: whilst. rotation involves turning around the same point (same

axis), navigation presupposes translations and rotations and rotations occur in different axis.

Therefore, in the mathematical sense, the context of navigation is more complex than rotation, since

rotation is one of the steps involved in navigation, i.e., children need to know (or at least, to carry

out) rotation in tasks involving navigation, but the contrary is not true. From the psychological

perspective it is also possible to note differences between the two contexts which were probably

influencing the children's experience.

5 - I am not afirming that 8 year old children solved more dynamic questions correctly than the 14 year old
children. Rather, it refers to a comparison, within groups, between the average of correct responses taking
into account the dynamic and static perspectives.
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My last reflection concerns the dynamic and static perspectives. The finding showed that the

older children, the more they referred to the dynamic perspective. It was also showed that the p&p

setting is the hardest one for children of all ages. P&p was the setting which, unlike the other two,

basically explored static activities. This happened because I was interested in exploring the

relationship between p&p and school, as I did between the spontaneous concept and the everyday

setting, and also between dynamic and the Logo setting. However, thinking only in terms of dynamic

and static perspectives, I noted that arenas could be better balanced intra and inter settings. In this

way the everyday setting should involve other static arenas besides the stick game, the one in which

children did not make association with their daily life. And the p&p setting should involve dynamic

arenas other than the arrow in which children can make associations with their everyday life. For

future research I would propose a design which included, in each setting, a balanced number of

arenas, in terms of dynamic and static as well as in terms of cultural and non-cultural meaning.
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CHILDREN'S CONSTRUCTION PROCESS OF THE CONCEPTS

OF BASIC QUADRILATERALS IN JAPAN

TADAO NAKAHARA

FACULTY OF EDUCATION, HIROSHIMA UNIVERSITY

( ABSTRACT )

The objective of this study is to investigate and clarify the process

of children's construction of the concepts of basic quadrilaterals.

We conducted three kinds of research tests and discuss the results
from three points of view.

Section 1 discusses the existence of common cognitive paths among

basic quadrilaterals. In section 2 we attempt to analyze the process

of cognitive development with mutual relationships among basic
quadrilaterals. Section 3 examines if actual children's thoughts of

basic quadrilaterals follow the thought levels proposed by van Biele.

0. INTRODUCTION

This paper attempts to investigate the process of children's construction of the

concepts of basic quadrilaterals, or specifically trapezoid, parallelogram, and

rhombus, from the following three points of view.

P1. Vinner's common cognitive path

P2. Recognition of mutual relation among quadrilaterals

P3. Van Hiele's theory of thought levels

P1 is based on the idea that there may be a concept construction path common to

most children in mutually related concepts A and B. This idea was proposed by

Vinner et al. (1980). Section 1 discusses the existence of common cognitive

paths among basic quadrilaterals.

P2 is an attempt to analyze the process of cognitive development with mutual

relationships among the basic quadrilaterals. In Japan, how to teach this topic

significantly changes each time the mathematics programs by the Ministry of

Education undergo revisions, which indicates there are a lot of need to be

explicated on the development process and difficult points. Section 2 discusses

these subjects.

P3 is associated with the concept construction process over the relatively

longer term. The theory of thought levels proposed by van Hiele is widely known

today, and studies which have found some positive results supporting the theory

are being carried out at present (NCTM, 1988). With such a situation in mind,
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Section 3 examines if actual children's thoughts of basic quadrilaterals in

Japan follow the thought levels by van Hiele.

Problems and subjects of this research are as shown below:

Problems for research: Research Problem Set I , II and III

( Appendix CD, 0 and CD attached at the end of this paper)

Table 1. Subjects of the research

School Elementary. School Secondary School

Grade 4th 5 t h 6th 7 t h 8th
( Age ) (9-10) (10-11) (11--12) (12--13) (13-14)

Number 1 0 6 9 7 1 1 2 1 0 6 1 0 1

1. COMMON COGNITIVE PATH

Teaching of the basic quadrilaterals in Japan at present is mostly carried out

in the fourth grade of elementary school. This section analyzes and discusses

the results from the tests of the research problem sets I and II conducted

with fourth graders and fifth graders. The research problem set I relates to

the extension of geometrical figure concepts, while that of set II to its conno-

tation. The results from the tests were processed as shown below.

With the problem set I, subjects who answered correctly five problems or more

out of seven have been assumed to have nearly-perfect understanding of the

extension of concept for the geometrical figure. Totalling the number of these

subjects for each of the geometrical figures has resulted in the next order:

parallelogram -4 rhombus-4 trapezoid. For that reason, common cognitive paths

from parallelogram to rhombus, and from rhombus to trapezoid have been antici-

pated. Accordingly, two-by-two contingency tables have been developed based the

distinction between nearly-perfect or not, and x z tests have been conducted

on those. One of the tables is as

Table 2. Two-by-two contingency

Trapezoid
( 4th graders)

shown in Table 2.

table of rhombus-trapezoid ( Set I )

0 Total

Rhombus 0
x

48 (45.3%) 32 (30.2%)

3( 2.8) 23 (21.7)

51(48.1) 55(51.9)

C): Subjects with nearly-
perfect understanding

X :The others
80 (75.5%)

26(24.5) x2 =16.6 p<0.01
(Yates' correction)

106 (100)

Regarding the problem set II, on the other hand, a subject has been judged to be

nearly-perfect with the connotation of the concept, when he (or she) answered

correctly five problems or more out of six for each of the figures. Totalling

again the number of nearly-perfect subjects with each of the geometrical figures
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has similarly resulted in the order of : parallelogram, rhombus, and trapezoid.

Since the same cognitive paths from parallelogram to rhombus, and from rhombus

to trapezoid have been anticipated, we have developed two-by-two contingency

tables between them for )0 tests. The results are shown in Table 3 and 4.

Table 3. Results of common cognitive paths relating to extension

Parallelogram to Rhombus Rhombus to Trapezoid

4th Graders Exist ( p <O. 0 1 ) Exist ( p <O. 0 1 )

5th Graders Exist ( p <O. 0 5 ) Exist ( p < 0 . 0 7 )

Table 4. Results of common cognitive paths relating to connotation

Parallelogram to Rhombus Rhombus to Trapezoid

4th Graders Exist ( p<0. 0 1 ) Exist ( p<0. 0 1 )

5th Graders Exist ( p <O. 0 5 ) Exist ( p <O. 0 8 )

These results signify that the common cognitive paths for the basic quadrilat-

erals are from parallelogram to rhombus, and rhombus to trapezoid, both with

connotation and extension. Those paths are considered to indicate the process

and paths of constructing the concepts. Therefore,teaching these concepts should

be more effective when made in order of parallelogram, rhombus and trapezoid. It

is noteworthy that the order is not a mathematical transition from the general

to the special nor the special to the general.

2. RECOGNITION OF MUTUAL RELATION AMONG QUADRILATERALS

Researching problems for this view point are primarily the problem set III. The

results focusing on the rate of correct answers are shown in Table 5.

Table 5. Results of problem set III

Rectangle I, Oladrilatrral Triangle Ic hmemelmtTri. Parallelogram & Trapezoid Parallelogram It Moth.:

0
C r 4\1

a'
A

b
E

c

I '

d

0

T. a
A

b
E

c
I '

d'

0

T. a'

A
b
E

c

I '

d
0

T. a

A
b

E
e'

I '

d'

0
T.

4th
8-106

%

72
%

79
%

42
%

55
%

62
%

55
%

66
%

64
%

65
%

63
%

16
%

33
%

58
%

29
%

34
%

62
%

48
%

48
%

62
%

55

6th
8.112 87 88 67 75 79 83 71 80 83 79 20 41 60 44 41 74 64 70 69 70

8th
9.101 91 91 79 86 87 86 79 87 85 84 41 58 76 63 60 73 83 79 76 78

From the above results, the following conclutions may be drawn, wherein the

following discussions triangles and quadrilaterals are called general figures,

and isosceles triangles, parallelogram etc. that are derived by adding restric-

tions are called special figures.
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i) Mutual relationship between a general figure and a special figures as

between a triangle and an isosceles triangle or between a quadrilateral and

a rectangle is basically recognized by 65 % --70 % of fourth graders and by 85 %

--90 % of eighth graders. These high rates of correct answers indicate the ease

of recognizing the mutual relationship between a general and a special figure as

compared with other relations.

ii)Mutual relationship between a parallelogram and a rhombus is basically

recognized by approximately 55 % of fourth graders, approximately 70 % of sixth

graders, and by 75 %--80 % of eighth graders. Those numbers show that recognizing

mutual relationship between special figures is more difficult than between

general and special figures.

iii)Only approximately 20 % of sixth graders, and approximately 40 % of eighth

graders gave correct answers to the questions on the mutual relationship between

parallelogram and trapezoid.That indicates that recognizing the mutual relation-

ship between parallelogram and trapezoid is the most difficult relationship for

children.

iv)The significant difference in the rate of recognition of the mutual rela-

tionship between parallelogram and rhombus and that of parallelogram and trape-

zoid indicate a difference in the construction of concepts between rhombus and

trapezoid. Results from the research problem sets I and III indicate that many

children have an image of a footstool about trapezoids, and they understand

trapezoids as having only a pair of parallel sides. The former is a prototype

phenomenon (Hershkowitz et al.,1990, pp.82-83) induced by typical trapezoid

figures presented in early stages of teaching. The latter, on the other hand,

comes from the difficulty in the definition of trapezoid involving the use of a

logical term "at least", or from ambiguity due to avoidance of that difficult

term. Results from the problem set III also show that once a child understands

the definition in such an exclusive manner, it is difficult for him (or her) to

correct the exclusive understanding even after learning the logically correct

definition afterward.

v) The recognition of the mutual relationship between quadrilaterals reflects

common cognitive paths from parallelogram to rhombus, and rhombus to trapezoid.

From all of the above, the following are derived :

(a) Recognition of mutual relationship between figures varies in level of

difficulty according to that of the object figure.

(b) With quadrilaterals, mutual relationships are recognized and constructed at

first between a general figure and a special figure, then between special

figures, and lastly between difficult-to-define special figures.
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(c) In teaching trapezoids, some improvements should be made with pictures and

definition to be presented in the early teaching stage.

3. THEORY OF THOUGHT LEVELS

Today, a variety of research problem sets have been developed to identify the

thought levels proposed by van Hiele. By the standards suggested by Mayberry

(1983,pp.60-61), the research problem set I, II, and III are judged to be those

to determine if the thought level 0, 1, 2 are reached respectively. Therefore,

using those problem sets, this section discusses the thought levels on quadri-

laterals.

Results from the research have been processed as shown below: with the problem

set I , those subjects who gave two or less wrong answers have been assumed to

have nearly-perfect understanding, while, with the sets II and DI, those with

only one or no wrong answer have been assumed to be the same. On that assumption,

research have been carried out to determine if the subjects are nearly-perfect

with respect to each of the problem sets I , II, and III, and to summarize the

results. Table 6 shows the results with fourth graders and eighth graders.

Table 6. Results of analysis for thought levels

C) : Subjects with nearly-perfect understanding x : The others

4th Grader (N=106) 8th Graders (N=101)

Thought
Level

Problem Set
I II IH

Paral. Rhom. Trape. Paral. Rhom. Trape.

Level 2

Level 1

Level 0

0 0 0
0 0
0 x x
x x x

Sub-total

0 x 0
00 0

0

2 3

33
23
_ 8
86

6
5
2

2

%

_

1 4

33
18
13
78
10
2

2

8

% 1%
31
13
32
77 :
3

14
1

5

6 9 %
22
4
1_

96
2--

0
1

1

6 2
19
4
2

88
5
1

3
3

% 3 6 %
31
4

10
80
3

12
4
1

The following examines these results from two view points presented by Mayberry

(1983, p.58): The first is an inversion phenomenon, and the second the consensus

of levels between concepts. In order for thought levels to represent development

levels, there must not be cases of inversion phenomena where, for example, a

subject can solve level-2 problems, but still cannot solve level-1 problems. To

examine the phenomena, a sub-total line has been inserted. Patterns above the

sub-total line include no examples of inversion phenomena, while those below it

represent subjects showing the phenomena. The subtotals represents the rate of
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the numbers of subjects showing no inversion phenomena.

The tables indicates that 77 % or more of children show no inversion phenomena

with each of the geometrical figures for each class of school graders. No firm

criterion, or minimum proportion of subjects without inversion phenomena has been

established yet to determined if the thought levels represent the development

levels. The above results,therefore,show that, by setting the criterion to 77 %,

the thought levels can represent the development levels with each of figures and

for each class of school graders. For that reason, one of the conclusions of

this paper is that the concepts of basic quadrilaterals develop in accordance

with thought levels presented by van Hiele.

The second view point, the consensus of levels between concepts, represents a

condition, for the purpose of this paper, where a child is on the same level

with respect to parallelogram, rhombus, and trapezoid. In the above table, the

numbers of children at each of levels vary significantly by geometrical figures.

For example, the numbers of children at the level of 000 ", or level 2,

vary significantly with respect to parallelogram, rhombus,and trapezoid. Judging

from these facts, the consensus is not observed.

Those results indicates that the thought levels of the same child will vary

according to different geometrical figures. Therefore, it should be upderstood

that a child's thought level depends on concepts.

The results, however, do not necessarily negate generality in the development of

thought levels. We think that it is possible that although the development level

itself is at the level 2, the level with a paticular concept still remain lower

because the subjects had yet learned it or learned it insufficiently.
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Appendia RESEARCH PROBLEM SET I

Q. 1 Among the quadrilaterals shown in the figure below, enter a circle (C)) in

the parentheses ( ) if the figure belongs to the class parallelograms, and

a cross(x) if not. If you are not sure, enter a triangle(A).

a b 13111
/N 1p1111110111

IMMOMik111111111111

MEP' rillihiteMEM

d: '

g

Q. 2 Among the quadrilaterals shown in the figure below, enter a circle (0) in

the parentheses ( ) if the figure belongs to the class trapezoids, and

a cross(x) if not. If you are not sure, enter a triangle(A).

a C
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UNIFAIII01 /1111111111

V I

Q3. Among the quadrilaterals shown in the figure below, enter a circle (0) in

the parentheses ( ) if the figure belongs to the class rhombuses, and

a cross(x) if not. If you are not sure, enter a triangle().

a b d

g
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Appendix® RESEARCH PROBLEM SET II

Read the following sentences a.through f.in Q 1--C13 and circle the letter

if it is right, or cross if not.

Q 1. ( Properties of a parallelogram )

a. Both pairs of opposite sides of a parallelogram are same length.

b. Both pairs of opposite sides of a parallelogram are parallel.

c. Adjacent sides of a parallelogram are same length.

d. Opposite angles of a parallelogram are the same.

e. Adjacent angles of a parallelogram are the same.

f. Some parallelograms have four sides of different lengths.

Q 2. ( Properties of a trapezoid )

a. Both pairs of opposite sides of a trapezoids are same length.

b. One pairs of opposite sides of a trapezoids are parallel.

c. Adjacent sides of a trapezoids are same length.

d. Opposite angles of a trapezoids are the same.

e. Adjacent angles of a trapezoids are the same.

f. Some parallelograms have four sides of different lengths.

Q 3. ( Properties of a rhombus )

a.--f.: The same kind of questions in C11

Appendix® RESEARCH PROBLEM SET III

Read the following sentences a. through d. in Q. 1--C14 and circle the letter

if it is right, or cross if not.

Q 1. ( Rectangles and Quadrilaterals )

a. All rectangles belong to quadrilaterals.

b. No rectangle belongs to quadrilaterals.

c. Only selected rectangles belong to quadrilaterals.

d. Some rectangles do not belong to quadrilaterals.

(I 2. ( Triangles and Isosceles Triangles) The same kind of questions in CLI.

(13. ( Parallelograms and Trapezoids ) The same kind of questions in Q 1.

C14. ( Parallelograms and Rhombuses )

a. All parallelograms belong to rhombuses.

b. No parallelogram belongs to rhombuses.

c. Only selected parallelograms belong to rhombuses.

d. Some parallelograms do not belong to rhombuses.
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SPHERICAL GEOMETRY FOR PROSPECTIVE

MIDDLE SCHOOL MATHEMATICS TEACHERS

Evangelina Diaz Obando

Florida State University
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Elizabeth M. Jakubowski

Florida State University

Rail A. Sanchez
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The purpose of this study was to investigate the viability was the implementation of a

spherical geometry unit in a university geometry course designed for prospective middle

school teachers. Using qualitative data collected from students enrolled in this course,

instructor reflections, and participant observations, it was found that the proposed unit

promoted novel and rich discussions during its development that allowed prospective

middle school teachers to construct alternate views of mathematics learning

enVir011171e111S.

Preamble

Currently, there have been many calls (National Council of Teachers of

Mathematics [NCTM], 1989; NCTM, 1991; National Research Council [NRC], 1989) to

implement changes in content and pedagogy in elementary and secondary school

mathematics. These suggestions propose a shift from traditional practices to more

student-centered activities.

As a result for these calls, the Mathematics Education Program at Florida State

University is currently carrying out a National Science-Foundation funded research project

entitled "Development of Effective Mathematics Learning Environments and Tasks for

Prospective Middle Grade Teachers." The main aim of this project is to plan and

implement courses in mathematics and mathematics learning and teaching for prospective

middle mathematics teachers. Providing opportunities for prospective teachers to

construct discipline specific pedagogical knowledge is a priority of this project so that

prospective middle school teachers will construct and adequate meaning of mathematical

concepts as central to middle school mathematics (Jakubowski, Wheatley, &

1993).

The work reported in this paper was supported by National Science Foundation Grant # DUE 9252705.
All opinions, findings, conclusions, and reconunendations expressed herein are those of the authors and
do not necessarily reflect the views of the funder.
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Course Development

An experimental course, "Elements of Geometry" has been developed as part of

the activities in this project and it will be used as the focus of this report. This course was

designed to provide opportunities to construct geometric patterns and relationships. At

the same time these issues will be examined from a learning and pedagogical perspectives.

Among the content of this course, one and perhaps the heart of this'course, is a unit of

non-Euclidean Geometry.

Students entering the geometry course do so with a rather uniform set of beliefs

about what mathematics is. This set of beliefs, largely resulting from many years of

mathematics courses, is well represented by the belief that mathematical activity is nothing

but "applying" a fixed procedure to get the answer to a task that already existed or was

developed by someone else. Contrastingly, one of the main goals in this course is fol.

students to construct for themselves mathematical patterns and relationships. Thus tasks

and learning.environments have been created so that they will provide potential learning

opportunities for the participants. With this goal in mind, the proposed primary

instructional strategy of this course is problem centered- learning (Wheatley, 1991) and

assessment procedures have been developed accordingly.

In an attempt to help students understand the role of geometry in the real world, a

set of spherical geometry activities have been developed and field tested. For instance,

Sullivan (1969) argues that concepts developed in mathematics program will be helpful in

map reading because the study of coordinates could help students in learning about

latitude and longitude. Congleton & Broome (1980) describe a geometry module

designed for use at the high school level. This module included topics such as spherical

geometry, the coordinate system used to describe points on the earth' surface, parallel and

meridian sailing, and a Solution of right spherical triangle problems. Van Den Brick

(1993), in his workbook "Mecca," that deals mainly with spherical geometry on the globe,

explains the subtleties inherent in designing a new topic (i.e., spherical geometry) and .

students' experiences when activities were conducted at school. Lenart (1993) reports an

experiment involving 400 students from middle school to college level, in Budapest, in

teaching elements of spherical geometry, contrasted with concepts of plane geometry. He

stressed the reflections and remarks of students and teachers involved in the experiment.

Indeed, he claimed that the experience was successful and appropriate for students,

including middle school studenti. Casey (1994) described a classroom activity where

students were introduced to the curvature of surfaces using a wide variety of objects. He
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concluded that projects of this nature are appropriate to introduce students to fascinating

geometrical phenomena exhibited by surfaces.

Overall, the above reports emphasize the viability of introducing students to

spherical geometry activities. In fact, such activities rich potential learning opportunities

for students and thus it seems worthwhile to introduce prospective middle school teachers

to topics of spherical geometry which in turn will help them to become better prepared for

teaching middle school students.

The Research

This research project is part of a larger study. Data reported in this paper was

collected during the Fall Semester 1994 from one of the sections of the undergraduate

course "Elements of Geometry" at Florida State University [the section used to collect the

data for this report was an experimental course of the research project]. The main goal of

this report was to investigate the success of the spherical geometry unit in a university

geometry course designed for prospective middle school teachers. This research was

conducted under a constructivist framework (von Glasersfeld, 1987). The assumptions

guiding this research were essentially taken from an interpretive perspective (Erickson,

1986). Several techniques were used to collect data - classroom and participant

observations, informal interviews, audio tapes, various students documents [of their

solutions to some geometric tasks of the spherical unit], learning portfolios, and journals.

Data collected were analyzed on a continuous basis throughout the semester and more in

depth during the implementation of the spherical unit. This analysis provided rich

descriptions of relationships between the students' world of geometry and the mathematics

that emerged from the engagement of students in specific activities and/or during

discussion time. Triangulation of data (Lincoln & Guba, 1985; Patton, 1990) was used to

support assertions and assure their viability.

Most of the students in this course had little or no experience with practices

informed by constructivist views. The instructional strategies included mathematical

problem solving in small groups as well as whole class discussion. All participants were

encouraged to share their views with the class to provide additional opportunities for

students to test and/or reconstruct the viability of their mathematical constructions.

Mathematical procedures and formulas were not emphasized in this course. In fact, the

emphasis was placed on students constructions of conceptual or relational, rather than

instrumental understanding (Skemp, 1978).

The spherical geometry unit was implemented over a period of five weeks with

two sessions per week of an average of 75 minutes per session. When the unit was first

introduced, students were given a set of tasks designed so that they have the potential of
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being problematic, this was guided by the main rationale in this course being that

mathematics was to be viewed as a personal activity with opportunities for each person to

construct their own mathematics (Wheatley, 1991). The class was divided into small

groups of three members each. Each group was provided with a globe of the earth (the

sphere) and a beach ball that they could use as a model of the earth. Students were

provided with additional materials such as markers, string, scissors, and tape. The first

task given to the groups was to draw on the beach ball the equator and the Greenwich

meridian, longitude lines, and latitude lines. Although it seemed to be a simple task,

students were actively engaged and the task itself generated rich opportunities for

clarification of the concepts and characteristics of longitude and latitude. In addition,

negotiation of conventional mathematical terms of longitude and latitude was ensured.

There was no specification of strategies to be used in solving the tasks. In fact, students

were encouraged to work in collaboration and become autonomous in their negotiation of

social norms. They were encouraged to devise their own methods to solve the tasks and

to share their findings during whole class discussion.

Subsequent sessions dealt with concepts of great circle, "straight" line, spherical

triangle, and quadrilateral, among others. In the following section of this paper we will

illustrate some of the findings using descriptions of students' experiences and reactions

during the implementation of this unit.

Findings

For the purpose of this paper, the findings reported will illustrate the views of

students that are representative of students' elaborated constructions that emerged from

the spherical geometry unit.

One student commented the following, "it amazes me that everyone in this class is

at least twenty years old and yet we are figuring out how to calculate longitude and

latitude." Simple events developed in the classroom such as drawing longitude and

latitude lines, identifying places such as Tallahassee on the globe and locating those places

on the model of the earth (using the beach ball) certainly helped students to construct a

deeper understanding of the concepts involved. Several students from this class shared the

view that activities of this nature are extremely beneficial to the whole class, in the sense

that the activities challenge them to integrate what they know whether it was learned from

a formal setting or learned from their lived experiences. At the same time, they were given

the opportunity to construct or reconstruct the world in which they live. Another student

said, "this is the first time that I have thought about relating map reading to mathematics,"

while a different student added, " I think that with more exposure to these activities, I am

steadily defining within myself several characteristics of what mathematics is." These are
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few of the comments that students made when they began to solve the tasks of this unit.

Overall students expressed both surprise and satisfaction of what they have learned by the

end of the spherical unit.

All students from this class "understood" the concept of a triangle, however when

they where asked to define a triangle on the sphere, most of them had no alternatives at

the beginning (other than the traditional definition of a triangle). After a long process of

negotiation in their small groups,: students came to a consensus that a spherical triangle is

formed by the intersection of three great circles. Some students in their effort to make

sense of a triangle on the sphere cut pieces of strings and taped them on the sphere. Later

on they took out the constructed triangle and laid it down on a flat surface. To their

surprise they found out that thesum of the angles of the spherical triangle was greater

than 180 degrees. They could hardly believe that a triangle on the sphere could actually

have that characteristic. In fact, one group characterized spherical triangles in the

following manner: "Spherical triangles are those which are formed by the intersection of

three great circles (as opposed to the intersection of three line segments on a flat surface),

each angle of the triangle is formed by the intersection of two great circles, a triangle can

have one, two, or even three right angles, and the sum of the internal angles is greater than

180.°" A different group made sense of an equilateral triangle by relating it to problem (2)

in appendix A, where the distances traveled defined perfectly an equilateral triangle since

they were asked to travel from the North Pole 25% of the way around the globe and this

direction was given three times and every time they were asked to turn 90° (see appendix
A).

Another relevant concept that was discussed was the negotiation of a quadrilateral

on a spherical surface. Students' characterizations of these quadrilaterals were as follows:

"A spherical quadrilateral is constructed by the intersection of four great circles at four

different points (that represents the vertices of the quadrilateral);" "A spherical

quadrilateral uses curved lines (as opposed to straight lines in Euclidean geometry) and the

sum of its internal angles is greater than 360," " "A quadrilateral on a spherical surface

with the length sides equal was not a square, but a parallelogram," "A quadrilateral on a

spherical surface with all angles equal to 90° was not a square, but a rectangle." The

previous conceptualizations that students constructed are flowed, however they indicate

ways in which students made sense of spherical issues.

Since the assessment for this class relied heavily on a learning portfolio, students

had to reflect on what they learned with each unit. This event lead some students to

develop activities for middle school students about spherical geometry issues. For

example, one student created a problem-solving task where students needed to work in

47
3 -39



small teams to develop a plan for a vacation. This activity involved some spherical

geometry concepts and so students would have the need to resolve similar issues in order

to develop their plan.

The data analysis suggests that spherical geometry units are appealing and have a

great potential for learning geometry in an innovative manner.

Conclusions

The spherical geometry unit provided opportunities for prospective middle school

teachers to make sense of geometric concepts in an interesting and captivating way.

Overall, the activities implemented during the development of this unit promoted active

engagement of students enrolled in this course. They valued the fact that they were given

the autonomy not only to make sense of the mathematical concepts entangled but also

they were given freedom to make sense of mathematical concepts and to develop their

own methods to deal with particular tasks. Indeed, during discussion time students even

commented on the usefulness and appropriateness of these tasks for middle school

students.
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APPENDIX A

Sample Tasks of Spherical Geometry Unit

I. Given that the circunfcrence of the earth is 25,000 miles,
a. Estimate the distance from New York City to San Francisco.
b. Estimate the distance from Tallahassee to Moscow.
c. Estimate all points that are exactly 3000 miles from Boston.

2. Begin at the North Pole. Travel 25% of the way around the globe, turn 90° to the
right, travel another 25% of the way around the globe, turn 90° to the right again, and
finally travel 25% around the globe. Where are you7

3. Begin at (lat, Ion) = (85, 0), heading due West. Travel in a straight line 25% around
the globe. Determine your final heading.

4. Investigate the relationship between the side lenghts and the angles for the following
(on a sphere):
a. Equilateral triangles.
b. Isosceles, right triangles.
c. Regular polygons having four sides.
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SPATIAL PATTERNING: A PILOT STUDY OF PATTERN FORMATION AND

GENERALISATION
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The purpose of this paper is to report the outcomes of a pilot study of a larger project designed
to explore the types and levels of cognitive functioning underlying the conceptual development of
spatial patterns and relationships. It focuses specifically on pattern formation and generalisation and
links these to the SOLO Taxonomy (Biggs and Collis, 1982, 1991). Observation of students'
responses to three tasks suggests a unistructural-multistructural-relational cycle in their attempts to
recognise generalisations from their representations of the patterns. The study also reflects a
preference for students to model or draw external representations of the pattern as a basis for making
generalisations.

Expressing generality from patterns is a notion fundamental to the development of

mathematical concepts. It is, for example, one of the three subheadings in the algebra section of the

National Statement on Mathematics for Australian Schools (Australian Education Council, 1991) and

is also an important component of the Curriculum and Evaluation Standards for School Mathematics

(National Council of Teachers of Mathematics, 1989). The National Statement on Mathematics for

Australian Schools recommends that children "work with a variety of numerical and spatial patterns,

and find ways of expressing the generality inherent in them....leading children to recognise that

different descriptions can fit the same spatial arrangements" (p.191). It is important to explore the

most effective ways of implementing these ideas in the classroom at all levels. The focus of the

larger project of which this study is a part, on the conceptual development of spatial patterns, was

chosen because of the acknowledged importance of spatial thinking in its own right as well as its

powerful contribution to mathematical thinking in general (Lean & Clements, 1981, Bishop, 1983,

Australian Education Council, 1991).

Several writers (Bishop, 1983, Presmeg, 1992, Australian Education Council, 1991,

Thomas and Mulligan, 1994) have acknowledged the importance of encouraging students to use

visual processing in order to Succeed at mathematical tasks, and this is particularly true of spatial

patterning. However, there is evidence that some children have difficulties with visual processing

(Bishop, 1983) and that there is a need to understand more about how it can be developed. Kosslyn

(1983) contributes to this understanding by defining four stages of image processing: generating an

image, inspecting an image to answer questions about it; transforming and operating on an image; and

maintaining an image in the service of other mental operations. This is reflected in the National

Statement on Mathematics for Australian Schools, which claims that, to be able to represent a pattern

internally, children first need to be able to see it, then find ways to express it verbally.

The pilot study reported here was concerned with finding out more about the first of

Kosslyn's stages, that is how children go about generating an image in order to be able to see the

pattern. This is a critical step. In fact, Resnick and Ford (1981) suggest that "the important
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intellectual work is over once a representation has been developed" (p.220). In particular, this part of

the study was concerned with the kinds of external representations children may need to create in

order to be able to transfer to a mental representation. To establish whether some forms of

representation lead to more successful outcomes than others, required an understanding of the

contributions of previous research regarding children's approaches to processing mathematical.

information.

There is evidence that successful mathematicians do not necessarily all use the same modes for

processing information (Krutetskii, 1976, Shama and Dreyfus, 1994). The modes they use can

include verbal-logical and visual-pictorial (Krutetskii, 1976), physical/kinaesthetic, ikonic or

notational forms, or various combinations of these (Gardner, 1983, Thomas and Mulligan, 1994).

While Mayer & Sims (1994) found that some students do not need visual prompts because they can

generate their own representations, others have reported the manipulation of materials (Owen's,

1994), drawing diagrams (Resnick and Ford, 1981), or a combination of these (Bishop, 1983) to be

important in establishing internal representations and extracting meanings. Krutetskii (1976) claimed

that students'can be equally successful at mathematics with different correlations between visual-

pictorial and verbal-logical components. Watson, Collis and Campbell (1994) comment on the need

for all of these forms to be used to support instruction in the early high school years.

In spite of this knowledge, there is evidence of a mis-match between students' preferred

methods of processing information and the way in which the information is presented to them

(Resnick, 1992). Resnick suggests that this may be due to failure to encourage children to build on

to their already established, intuitive ideas about mathematics. The contributions of Biggs and Collis.

(1991) and others (for example, Campbell, Watson and Collis, 1992, Collis, Watson and Campbell,

1993, Watson, Campbell and Collis, 1993, Watson et al., 1994) explore this notion of multimodal

functioning, particularly in relation to the ikonic and concrete symbolic modes of the SOLO

Taxonomy (Biggs and Collis, 1982).

If we are to find out more about how children process information about spatial patterns, it is

important to investigate these individual differences in the use of information processing (Presmeg,

1992). Two questions arise within the context of this project.

(i) Is there an observable progression in children's ability to recognise generalisations

from their representations of spatial patterns?

(ii) What kinds of external representations do children make of patterns, and what intuitive

or concrete symbolic processes do they apply to these representations, in order to form

generalisations?

In exploring these questions, we seek to investigate the interaction between development of

children's external processing of generalisations from spatial patterns and the development of intuitive
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and concrete symbolic thinking in relation to this. The most suitable model for doing this is the

SOLO Taxonomy (Biggs and Collis, 1982, 1991), because this has been adapted "in response to

recent structuralist evidence identifying a multiplicity of intelligences" (Campbell et al., 1992, p.279).

Like Watson et al. (1994), the focus in this study was on school-aged children. As a

consequence it concentrated mainly on two of the four modes of functioning identified by Biggs and

Collis: the ikonic and concrete symbolic modes. It will also explore the existence of a unistructural-

multistructural-relational cycle within these modes (Campbell et al., 1992).

Tasks

Three tasks were selected in which students were asked to express generalisations from

patterns. These tasks were chosen for the following reasons: they are spatial in nature,

they are suitable for representation in different formats, namely physical/kinaesthetic, visual-pictorial,

and verbal-logical representation, and they are typical of patterning tasks recommended in documents

such as the National Statement on Mathematics for Australian Schools (Australian Education Council,

1991) and Curriculum and Evaluation Standards for School Mathematics (National Council of

Teachers of Mathematics, 1989). The three patterns are represented, in pictorial form, in Figure 1.

Figure 1: Tasks

Task 1: The Match Pattern Task 2: The Step Pattern

1 1 1 1 1 1 1 1 1

n

Task 3: The Path Pattern

To give students the opportunity to respond in either an ikonic or a concrete symbolic.mode,

or a combination of both, and to represent the patterns in the most suitable way for this, the tasks

were presented in three different formats. These formats are consistent with the. multiple modes of

processing suggested by other researchers and described earlier in this paper:

(i) concrete modelling, in which a representation of the

pattern was made from blocks or other materials, to cater for the kinaesthetic learners,

(ii) diagram, to cater for the visual-pictorial learners,

(iii) word description, presented both verbally and in

writing, to cater for the verbal-logical learners.

In order to ensure that the format in which the experimenter presented the task was not likely to

influence the student's form of representing it, the tasks were presented in a cyclic rotation of

formats, as shown in Table 1. To ensure an even distribution of the three modes across the first,
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second and third tasks respectively, the sequence in which the tasks were presented was held

constant.

Table 1: Formats in which tasks were presented

Tasks
Match Step Path
concrete diagram verbal Students 1, 4,

7, 10 etc.
diagram verbal concrete Students 2, 5,

8. 11 etc.
verbal concrete diagram Students 3, 6,

9, 12 etc.

Procedure

The sample consisted of 40 Year 7 students, in their first year of secondary school and aged

12 and 13 years. There were equal numbers of males and females. The students were selected

randomly from several classes from a population described by their teachers as being of average

ability. Data were collected in individual clinical interviews, each of approximately twenty to thirty

minutes duration. Observation and Teachback (Pask 1976) strategies were used to monitor the

students' responses and interviews were tape-recorded for later analysis. The students were given

the tasks one at a time. Students were shown the patterns and asked to identify the fifth, tenth and

100th terms in the sequence (Orton and Orton,1994). They were given a selection of materials,

including matches, blocks, squared paper and blank paper, and told that they could represent any

steps of the patterns in whatever way they chose. They were then asked to describe the pattem and a

generalisation for "any term". It has been reported elsewhere (Robertson and Tap lin, 1994) that the

most frequently chosen format of representation was concrete modelling. This was irrespective of the

format in which the task was presented. Robertson and Tap lin (1994) also reported that the main

reason given by the students for this preference was that it gave a physical picture of the pattern that

was quick and easy to construct.

Results

Tftb le 2 summarises the formats in which Me students represented the match task, and their

attempts at forming generalisations. Because the study reported here was a pilot investigation, the

consequent small number of students in each cell necessitates that the analyses be descriptive. The

match task has been chosen for discussion here because the patterns represented in Table 2 are very

similar to those formed from students' responses to the other two tasks. Details of responses to these

latter tasks are available from the authors.

Responses of two of the children, who were unable to generate correct rules for the pattern,

indicated only a pre-structural understanding. One child, for example, could only describe the tenth

term of the sequence as "a long straight line". Three children counted the number of squares, which

matched directly to the step number, and ignored the number of matches in the pattern. Ten children
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relied on constructing the sequence to the tenth term and directly counting the matches. Four others

chose to count on in multiples of four, since they assumed that each square had four sides. None of

the children who used these strategies chose to continue with this "counting on" method to the

hundredth term and, understandably, none could predict a rule for "any" term. The "counting on"

group of strategies has been classified as unistructural because each of the variations uses only one

relevant aspect of the mode, namely the number of blocks or matches they could see.

A more sophisticated strategy was to look for patterns. The simplest of these, most likely

based on the children's previous experiences, was to construct the fifth step and then use multiples of

it. The justification behind this was that, since 10 is 5 doubled, the tenth term must be double the

fifth term. Four children used this strategy. The second strategy in this category was slightly more

sophisticated. Seven children recognised that the first square contained four matches and that each

subsequent one required only an additional three. These children were, however, only able to reach

the tenth or hundredth terms by adding on from the first term. Although there is a clear progression

in the sophistication of the responses in this category, they have both been classified as

multistructural because several disjoint aspects are processed in some kind of sequence.

Ten students were able to form generalisations, although nobody was able to express them in

algebraic terms. It is interesting to note that these were not all correct, despite the fact that the children

were demonstrating quite a sophisticated level of reasoning. Two explanations came close to

predicting general terms. One of these, 'The amount of how many squares, times 3 and add 4"

actually predicted the (N+1)th term rather than the Nth. Another explanation, 'There are four ends to

a square so you have to times it by the number for the step and then take away that number", gave the

Nth term + 1. An example of a more accurate explanation was, 'Take 1 off the number and times

that by 3 than add the 4 at the beginning". The eight students who used this latter type of strategy

were not only able to predict the Nth term correctly, they were also able to test their predictions by

calculating specific examples. These responses have all been classified as relational because they
a

reflect an integrated understanding of the relationships between the different aspects of the task.

While this analysis deals only with one phase in the process of generalising from patterns,

namely pattern recognition, it is clear that there is a progression in sophistication of the students'

responses. This progression is summarised' in Table 2. The majority of students used either

"counting on" or "looking for patterns" 'strategies and were unable to obtain successful

generalisations using these. Table 2 also summarises the numbers of students who represented the

pattern in various ways. For example, at the unistructural level, seven students needed to make a

physical model of, and four students needed to draw a diagram of; at least the fifth step before they

were able to recognise and work from a pattern. At this level, four students gave a verbal-logical

response rather than making any external representation of the task. Even as the responses became

more sophisticated, at least some students still chose to model the sequence in order to explore the

rules, rather than to use diagrams or verbal descriptions.
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Table 2: Summary of students' responses to
match task

Type of Response SOLO Classification No.
Students

Way in which Ss rep esented
task

Model Diagram Verbal

no particular system pre-structural i 2 2 0 0

counting on:

one-to-one matching: "every
number you say there has to be
that number (of squares) in the
group"

counting matches in
representation (could not
dolOOth)

counting on by 4s (ie 5th=5x4
10th=10x4) or 3s

unistructural i

ii

15

2

7

0

4

I

4

1

looking for patterns which are .

logical to Ss, possibly based on
previous experiences:

based on multiples of 5th step (ie
5th has 16, 10th has 16x2, /00th
has 10thx10)

starting at 4 and adding 3 for each
step but adding from
start each time (i.e. 4+3+3+3...)

multistructural i I I 5 3 3

recognition of a generalisation
(not expressed algebraically):
3N +1
3N+4
4N-N
3(N-11+4

relational i

ii

2

8'

2

6

0

I

0

1

Ss who responded at this level and had incorrect generalisation
Ss who responded at this level and had correct gene alisation
two of these Ss could successfully predict any step number, but would not articulate the rule

Discussion

In response to the research questions outlined earlier in this paper, the following observations

can be made. The results can only be interpreted for the small grade 7 sample and the three spatial

patterning tasks used in this study. There does, however, seem to be an observable progression in

the children's ability to recognise generalisations from their representations of spatial patterns, which

fits the SOLO model. This sequence can be summarised as follows:

Unistructural: counting on, mostly from external representations of the pattern; counting in either

ones or a multiple of some number suggested by the pattern.

Multistructural: recognition of pattems and use of these as a basis for finding specific terms in the

pattern; starting from first term of pattern each time in order to calculate a given term.
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Relational: recognition of patterns and use of these to predict any given term directly, without

needing to start from first term; articulation of generalisation, but not in algebraic terms.

The unistructural type of response was efficient for calculating the fifth and tenth terms of the

pattems, but students either lost patience or made arithmetic errors when trying to calculate bigger

terms, such as the hundredth. It was not possible for the students operating at this level to make

generalisations about the patterns. Responses at the multistructural level offered more efficient

systems for calculating bigger terms, but most students were still unable to generalise using these

approaches. The relational level responses allowed a more efficient system for generalising.

However, several of the children responding at this level gave incorrect formulae and did not seem to

have systems for checking the validity of these formulae.

The above suggests a unistructural-multistructural-relational cycle (Campbell et al., 1992) at

this particular grade level. Responses at the unistructural and multistructural levels are consistent

with Biggs and Collis' (1982, 1991) description of the ikonic mode, with some concrete symbolic

support. The students drew on some concrete symbolic experiences with counting and patterning, but

used intuitive strategies to try to make this previous knowledge fit the patterning tasks they were

given. At the relational level there is some suggestion of transition to concrete symbolic mode. This

warrants further investigation with older students to explore when and how the transition develops

with this particular type of task.

At all levels of the unistructural-multistructural-relational cycle, more than two-thirds of the

students chose to either model or draw at least the fifth step of the pattern before they moved to

working from an internal representation. The design of this study did not allow for distinguishing

between the functional level at which they chose to represent the task and the optimum level at which

they were capable of representing it (Lamborn and Fischer, 1988), Watson, Collis, Callingham and

Moritz, 1994). Nevertheless, it could support the idea that teachers should be encouraging modelling

and drawing (Campbell et al., 1992) as an important step towards efficient mental processing of the

information. This question warrants further investigation with a larger sample. It also suggests the

need to continue the study with older students to explore if, when and how they "transcend the

concreteness of an image or diagram" (Collis et al., 1993, p.119). It is also important to explore the

links between external and internal representations. Some data regarding this were collected in this

study and their analysis will be the focus of another paper.

In addition, the findings of this study suggest some further implications for future research.

One of these is the need to investigate the link between students' representations of spatial patterning

in these structured algebraic tasks and problem solving in "real" space, such as the interpretation of

maps, graphs and charts (Bishop, 1983). Another question that arises is the need to consider "non-

mathematical variables, such as student motivation, work habits, teaching, and language performance

which could contribute significantly to mathematical performance" (Lean & Clements, 1981, p.296).
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STUDENTS' IMAGES OF DECIMAL FRACTIONS

Kathryn C. Irwin, University of Auckland

This study explored the images held by 36 students of 10,11, and 12 years which related
to decimal fractions. Some of these images demonstrated an awareness that numerical
quantity could be continuous, and that decimal fractions represented small quantities.
Other images indicated that the students saw whole numbers as discrete, with nothing
coming between 0 and 1, and decimal fractions as 'just a number' without a quantitative
referent. Those students whose images helped them to generalize from a quantitative
understanding of 0.1 to 0.01 were those who described decimal fractions as proportions,
those who saw them as rational fractions, and those who used words that described small
portions.

Students have more difficulty in understanding decimal fractions than might be expected from the

logic of this part of the number system. The logic behind this notation is a downward extension of

the place-value system of whole numbers. In this system a number in each place is one tenth the

size of the the same number in the place to the right. Students' poor understanding of this system

has been demonstrated by the errors that they make in ordering decimal fractions (e.g. Resnick,
Nesher, Leonard, Magone, Omanson, & Peled, 1989) and by theill predictions of the result of

operations that include decimal fractions (e.g. Brown, 1981; Wearne & Hiebert, 1988).

These errors indicate that students often deal with decimal fractions as though they were whole

numbers, or that they deal solely with symbolic features of the notation rather than relating the
decimal fractions to appropriate quantity. Put another way, many students lack number sense for

decimal fractions.

If we are to improve the chances of students developing number sense for decimal fractions, it is

important to know what concepts they bring to understanding this aspect of number so that teachers

can help them construct understanding on this base. Relevant to the study reported here is the

informal or intuitive knowledge that students bring to understanding of fractions as explored by

Clemer& and Del Campo (1990) and Mack (1993).. One way of exploring students' understanding

of a mathematical field is through asking about the images that they have. Following on from the

work done by Presmeg in this field (e.g.1986) Reynolds & Wheatley (1992) claim that for
mathematics to be meaningful to children it needs to be based on appropriate images.

The descriptions of images discussed in this paper were provided by students who took part in a

larger study of understanding of decimal fractions. The students came from schools in multicultural,

lower economic areas of Auckland. An earlier study had shown that students from these areas made

less progress in understanding decimal fractions than did students from schools in more affluent

areas of the city where residents were predominantly of European descent (Britt, Irwin, Ellis, &

Ritchie 1993).

This research is supported by a grant from the Ministry of Education
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Method
Thirty-six students were interviewed individually on several aspects of their understanding of
decimal fractions. The students came from two multicutural schools in lower income areas, where

students of European descent were in the minority. Past records showed that the students from

these schools made slower than average progress in mathematics. Three boys and three girls were

interviewed from each school at each of the ages of 10, 11, and 12 years (mean ages 10 years 5
months, 11 years 5 months and 12 years 7 months). The ethnic background of the children was

Pacific Islander (Samoan, Niuean, Tongan, Cook Island Maori, and New Caledonian) - 56%, New

Zealand Maori - 22%, European - 19%, and Indian - 3%. This was similar to the ethnic makeup of

the school populations. All but one of these students had had the majority of their schooling in New

Zealand and were fluent in English. The principals of the two schools said that the sample of
children interviewed was representative of all students in their schools in mathematical achievement.

In the part of the interview reported here students were asked to shut their eyes, think about what

came between zero and one, and tell the interviewer what picture they saw. This question was asked

in an attempt to see if they could picture the quantity represented by number as continuous rather

than discrete, and to see if they had any sense of decimal fractions as coming between zero and one.

Alternatively their responses could have shown that the students referred to only symbolic features

of these numbers, seeing them as symbols without referents. A similar procedure was used for

discovering their visualization of "zero point one" and "zero point zero one". Both of these
questions were asked to see if students had an appropriate quantitative concept of these decimal

fractions or if they thought of them as either whole numbers or as symbols that did not have
referents. After their first response to each of these questions, students were asked if they could
think of any other picture.

Two other tasks which produced evidence of students' images are also referred to in brief. One was

a task in which students were presented with a piece of paper with a large square on it, told that this

represented a field, and asked to show how much one person would get if the field were divided

among 10, 100 and 1000 people. Grids were provided to help them with this division if wanted.

Responses to this task were compared to responses given to a different set of students who were

asked to divide up a rectangular cake without the aid of grids. The other task which yielded some

understanding of students' images of decimal fractions was one in which they were asked to find

out, on a calculator, what 0.01 needed to be multiplied by to get the answer 1.

Results
Visualization of What Comes Between Zero and One
Student's responses to this request for visualization were categorized as shown in Table 1.
Examples of the types of response in each category are given in the text.
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Category of
res onse

Age 10 Age 11 Age 12

Number ne 3 5 5
Plausible

representations
other than
number lines 2 0 0

A symbol which
could be put
between 0 and 1 3 5 6

Nothing comes
between 0& 1 4 2 1

Table 1. Number of students giving a response in each category when asked to think of what came
between 0 and 1.

The first two categories indicate some quantitative understanding of either numbers or space coming

between zero and one or that zero and one were part of a continuous scale. An interesting result here

was that the proportion of students in each age group giving an answer in these categories (5 out of

12) did not differ for ages 10, 11 and 12. What did change across age was the way in which they
described what, for this purpose, were misconceptions. Students aged 10 were more likely to say

that nothing came between zero and one, appearing to be sure that these represented discrete steps,

while older students were more likely to give an answer which related to symbolic or syntactic
features of numerical representation which could be said to ignore both their discrete and continuous

nature.

The one difference between students from the two different schools appeared on this task. All of the

12-year-old students who offered a number -line representation came from the same school, while

students from the other school predominantly thought of a symbol as coming between zero and one.

Although this could be a random effect, it could also have been the result of teaching. The students

visualizing number lines came from three different classes in the same school, but were their

teachers did some of their planning together.

Most of the responses scored as number lines were given in terms of fractions. The simplest of
these was that 1/2 came between 0 and 1. The next level of complexity was to add 1/4 to this
number line before 1/2. Of the 12-year-olds who drew number lines, three used decimal divisions,

one used fractions, and one mixed fractions and decimals incorrectly, first writing

1/4 1/2 3/4

and then writing:

0 0.1 1/4 0.01 1/2 0.001 3/4 1

This confusion of how decimal fractions fit into the number line was also demonstrated by an 11-

year -old who drew the following number line:

0, 1 ths, 10ths, 100ths, 1000ths, 1

3 -52

60



The 12-year-olds who drew number lines with decimal fractions all displayed an understanding of

the placement of decimals fractions with a different number of decimal places. Examples were:

a) 0 b) 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

0.1 A

0.2 .01

0.3 .001

0.4
0.5 < 0.42

0.5
0.6
0.7
0.8
0.9

1

Figure 1: Number lines drawn by two 12-year-old students that indicated understanding of the
placement of decimal fractions of different sizes

The following excerpts are from the transcripts of the two students who gave non-number line
responses that indicated an understanding of something coming between zero and one:

Interviewer Next shut your eyes tight and I want you to think about everything that comes
between zero and one. Can you get a picture of what comes between zero and one?

M Yes.
I Tell me what your picture is like.
M A baby that's not quite one, not newly born, it's about three months old.
I That's good, could you draw that in any way or write it down?
M Yip.
I Any other pictures in your mind?
M Some lollies that are only sixty five cents, not quite one dollar and they're not free.

I. Let's do something different. Shut your eyes and think of everything that comes between zero
and one. See if you can get a picture. What comes between zero and one? Can you tell me?

H Um, I think it's urn centimeters. There's a zero and then there's a, there's a zero and then
there's a centimeter

I You write it down.
H See, there's a zeros here and then you start centimeters here and then it's one, oh,

[draws 0 cm 1 2 3 4'5 6 7 8]
I Ok, where do you see it like that?
H On a ruler

Of the students who drew symbols as coming between 0 and 1, three used operation signs (e.g.
0+1), and the rest said that the decimal point came between 0 and 1 (0.1). It was not possible to get

an additional response from students who gave 0.1 as their visualization. That was all that they
saw. There was a possibility that the response 'a decimal point' was influenced by the design of the

interview, as all students had previously been asked what they knew about decimals and had been

asked to put decimals of different magnitude in order by size.
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The belief that nothing came between 0 and 1 was also apparent in the answers of several students in

another portion of the interview when they were trying to guess what 0.01 needed to be multiplied

by on the calculator to get the answer 1. These students said that of their various guesses, 0 was

closer to 1 than was .01, .0001, or other small decimal fractions.

Visualization of Zero Point One
Students were next asked what picture they could get for zero point one, and their responses were

categorized as shown in Table 2. Visualization of a quantity represented by 0.1 did increase with

age. Answers that indicated some understanding of the quantity for 0.1 were given by two of the

10-years olds, six of 11-year-olds, and seven of the 12-year-old students. There was no difference

between the schools on this task.

Category of response Age 10 Age 11 Age 12
Verbal indication of
quantity e.g."a
small bit" 0 0 4

Fraction equivalent 1 6 2
One part in 10 1 0 1

Just a number /
same as 1 6 1 1

Don't know / no
picture 4 3 3

Other, apparently
not accurate 0 2 1

Table 2. Number of children giving different categories of responses when asked to visualize 0.1.

The first three categories in this table indicated a sense of the quantity represented by 0.1. While

four of the 12-year-olds gave the concept of quantity in verbal terms, such as "just a small bit", the

11-year-old students were more likely to give or draw the fraction equivalent. Two 11-year-old

students drew pie diagrams and shaded in one of ten portions, but used the word "half" in their

explanation to mean a piece. The 10-year-old student whose response was categorized as one part in

ten said that his mother had taught him, and explained in detail how a chocolate bar could be divided

amongst 10 people and 0.1 would be his bit. The portion of students who said that 0.1 was just a

number decreased as the age groups increased. Those who did not have a quantitative concept for

0.1 had all been dealing with decimal notation in the earlier part of the interview and had been

introduced to it in at least one context at school.

Visualization of Zero Point Zero One
The same categories used in Table 2 were appropriate for classifying students' responses to this

item. Indicating what 0.01 meant was more difficult than giving a quantity for 0.1. The proportion

of students of 10, 11 and 12 giving quantitative responses for 0.01 were 1 of 12, 6 of 12 and 3 of

12 respectively.
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Categoq of response Age 10 Age 11 Age 12
'Verbal indication of
quantity e.g."a very
small bit" 0 0 2
Fraction equivalent,
spoken or drawn 0 6 1

One part in 100 1 0 0
Somewhere between
0 & 1 1 0 1

Just a number /same
as 100 2 2 4
Don't know / no
picture 8 3 3
Other, apparently
not accurate 0 1 1

Table 3. Number of children giving different categories of response when asked to visualize 0.01.

It was surprising that more 11-year olds than 12-year-olds gave quantitative responses on this task.

It appeared that the 12-year-olds had less confidence that their understanding of fractions was
relevant to understanding a decimal in the hundredths. Several who had given a reasonable response

for 0.1 indicated that they had no idea what 0.01 meant.

There were three groups of students who were able to generalize from their statement of what 0.1

meant to a meaning for 0.01. One was the 10-year-old taught by his mother who went from his
proportional explanation of one part in 10 to an explanation one pan in 100. AnotherWas the group

of 11-year-old students who explained decimals in terms of their fractional equivalents. The third

group were 12-year-olds who intensified their verbal description of size, for example saying that 0.1

was a small amount, and 0.01 was "more smaller" (the student who was not fluent in English).

One student presented an interesting pair of responses for representations for 0.1 and 0.01, as
shown below. While these responses were considered to indicate a surface understanding of these

numbers rather than a quantitative one, they gave insight into the sense that he was trying to make of

place value.

I Up here we got an answer called zero point one, what does that mean to you? Can you
get a picture for that?...

G That's the middle of the two, it goes one, two, three, four, five, six, seven, eight and like
that, the other one that goes like one two, three, four, five, six, seven, eight,

I So write that down for me, so I can see what you mean.
G (writes starting from the right of the decimal point:)

4 3 2 1 0 . 0 1 2 3 4
I What about zero point zero one, what does that mean?
G The zero is the middle to zero and tens. So it would go, zero, it would go ten, twenty,

thirty, forty, fifty, sixty that way and it would go ten, twenty, thirty, forty, fifty, sixty that
way.

K Write that down. Write it over here.
G (writes) 5040302010.1020304050
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Other Representations
In a previous series of interviews, similar students of the ages of 8, 10, 12, and 14 had been asked

to show how they would divide a rectangular cake so that 10 people could have the same amount

each, and how one of those pieces could be further divided to provide enough for 10, making 100

pieces in all. All students of 10 and older could do this task. However, many of them took a
considerable amount of time to do it because they started out by showing a rectangle cut in half, then

halved again and again, giving eight pieces. They saw that this did not give the right number of
pieces, and continued to work on their drawings until they finally found a way of making 10 pieces.

Their initial attempts at division by halving suggest that this was their preferred method of division

and initially interfered with their ability to make divisions by 10 as required for a number sense of

decimal fractions. The 36 students in the later series of interviews were given a task that was
thought to be similar but turned out not to be. In this task the students were asked to show how

much of a field one person would get if it was divided among 10, 100, and 1000 people and offered

a variety of grids to help with the task. They were less successful on this task than similar students

had been on the freehand task. Two types of responses indicated their images of the result of
division by ten, a concept closely allied to decimal fractions. One response shown by several
students was representing a piece one tenth the size of the previous division by halving the last
division. The division by 1000 was drawn as 1/2 the size of the division by 100 by 17%, 42% and

33% of the 10, 11 and 12-year-old students. Another observed response was that students preferred

to draw all divisions as of similar shapes, either all long strips or all squares, although the simplest

method using the grids provided would have been to use a strip for 10ths, a square for.100ths, and a

strip for 1000ths. This would be the 2-dimensional representation closest to the representation in

Dienes blocks. The fact that many students did not chose this representation is interesting in the

light of the fact that all would have had extensive experience with Dienes blocks, but did not chose

this method of representation for their own drawings.

Discussion
No teachers in multicultural classrooms share the culture of all their students. Teachers must make a

special effort to understand the concepts that their students come with if they are to help them

construct a quantitative understanding of decimal fractions, a point emphasized by Mack (1993).

Teaching without reference to these concepts is likely to lead to some of the misconceptions that

concern mathematics educators. The fact that fewer of the 12-year-old students than the 11-year-old

students in the this study had a quantitative understanding of hundredths may have been the result of

emphasizing the procedures rather than the meaning in teaching students to operate with decimals.

Teachers with whom these results were discussed were not surprised to learn that some students did

not think that anything came between zero and one or did not give a quantitative description of

decimal fractions. However, few teachers had introduced this topic through exploring continuous

quantity.
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Advisers for this project had expected students to have a better understanding of decimal fractions

written in place-value notation than they had of rational fractions, because of recent changes in the

curriculum and the widespread use of calculators. This was not the case. Understanding of
fractional division by powers of 2 was more widespread than understanding of divisions by 10.

This repeated division by 2 is related to early concepts of fractions described by Clements & Del

Campo (1990) and Hart (1981), and is reinforced by folding paper to show fractional parts. With

this group of children it was also reinforced by a tendency to call parts of any size "a half'. This
was more common in the previous series of interviews than in the data reported here. This
phenomenon is familiar to parents of young children who talk about "the bigger half'. It isapparent
in mature people of Pacific Island descent who use the word half, or its transliteration "afa", to mean
a part of any size. This linguistic influence can mislead teachers and interviewers, but in the data

reported here needs to be separated from the ability to draw an object divided into 10 equal portions,

even if one of these portions is called a half.

These students showed some evidence that it was harder for them for understand hundredths than

tenths. A similar result was found by Brown (1981) and Britt, Irwin, Ellis & Ritchie (1993). This

may be the effect of teaching which emphasises discrete divisions into tenths rather than teaching

place value for decimal fractions as an extension of whole number place value. This potential

difficulty was overcome by those students who had a concept for the size of tenths which they could

generalize to hundredths. The three types of successful generalization given in this report suggest
concepts which a teacher could exploit to help their students build a meaningful understanding of
decimal fractions.
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PREFERENCE FOR VISUAL METHODS:

AN INTERNATIONAL STUDY

Norma C. Presmeg

The Florida State University

Christer Bergsten

Linkoping University

There have been assertions in recent literature on visualization that students

are reluctant to visualize when doing mathematics, particularly at.the high
school and college levels. While there is research evidence that in the
classes of 'nonvisual' teachers even 'visual' students will suppress their
preferred visual cognitive modes in favor of nonvisual methods used by their
teachers, our data show that it is simplistic to claim that students are
reluctant to visualize. In the present international study, the same instrument
for measuring preference for visual methods in solving nonroutine
mathematical problems was administered to students in three countries,
South Africa, Sweden and the United States. Some results are analyzed here.

Are students reluctant to visualize when they do mathematics? This claim

was made by Eisenberg and Dreyfus (1991), and in 1994 Eisenberg wrote, "A vast

majority of students do not like thinking in terms of pictures - and their dislike is

well documneted in the literature" (p. 110). He went on to cite calculus studies by

Mundy, by Dick and by Vinner in which students showed "a definite bias toward an

algebraic approach even when it was more difficult than the visual one" (p. 1 1 1). He

also described Clements' study of Terence Tao, a mathematically precocious

Australian who preferred not to visualize in doing mathematics, and used this study

as evidence that "the tendency to avoid visualization exists even in the

mathematically precocious" (ibid.).

We suggest that the studies cited by Eisenberg admit of other interpretations

than the one he has given. While it is certainly the case that students of all
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preferences may avoid visualization when this has not been encouraged as 'good

mathematical thinking' in the classroom (Presmeg, 1985), recent research by

Wheatley and Brown (1994) shows convincingly that far from being reluctant to

visualize, many students use their visualizations as a tool for meaning-making in

mathematics. Presmeg's (1985) study suggests that much of the visualizing done by

students is of a private nature: their imagery may not be apparent in written

protocols.

Further, the study by Clements of Terence Tao's mathematical cognition is

quite consistent with Krutetskii's (1976) model grounded in extensive case studies

of many mathematically gifted students. Krutetskii described representatives of each

of his categories or types of mathematical giftedness, which were based on students'

ability to use, and preference for, visual methods. Students who have the ability to

use visual methods may prefer not to, and the various combinations led to

Krutetskii's classification into "analytic" and "geometric" categories, and two

subtypes of "harmonic" in which verbal-logic and visual-pictorial components are in

equilibrium ( Krutetskii, 1976, chapter 16). Like Sonia L. ("abstract-harmonic") but

unlike Volodya L. ("pictorial-harmonic"), Terence Tao would probably have been

placed in the "harmonic" category based on his abilities - or in the "analytic"

category which evidences "a weak development of the visual-pictorial component"

(Krutetskii, 1976, p. 318). However, Krutetskii also found no difficulty in

identifying gifted students with the strong visual-spatial abilities and preferences

characteristic of his "geometric" category.

Further, in the research reported here we describe evidence from three

countries that individual students vary greatly in their preferences for visualization in

mathematics. Certainly, visualization may be downplayed or devalued in certain

classrooms or systems - leading some students to believe that visualization is not

mathematics - but apparently there is no dearth of visualizers 'out there'. Given the

opportunity, these individuals prefer to visualize in mathematics.
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The Mathematical Processing Instrument

Complete details of the development of the visuality preference instrument we

used in our research are given in Presmeg (1985), where definitions of terms are

also provided. Suffice it to say here that we take a visual image to be a mental

construct depicting visual or spatial information, andvisualization to be the process

of constructing or using visual images, with or without diagrams, figures or

graphics.

The Mathematical Processing Instrument (MPI) measures preference for

visualization, rather than ability, because of the strong research evidence that

students who are able to use visual methods may or may not prefer to do so (e.g.,

Krutetskii, 1976). The MPI was designed for use with grade i1 students and their

mathematics teachers (in a system with 12 grades). A previous instrument by the

same name, designed by Suwarsono (1982) for grade 7 Australian students, was not

suitable for use with mathematics teachers, although 13 of his more difficult

problems were retained. Distilled from more than 300 nonroutine problems, the

remaining 11 problems were drawn from a problem bank of more than 100 problems

each of which could be solved by visual and by nonvisual methods. No diagram was

present in any of the problems, since this might pre-empt visual methods. As in

Suwarsono's instrument, a test and questionnaire were used. After students or

teachers had completed the problems in the sections designed for them, (A and B for

students, B and C for teachers), they were asked to select a solution from the three

to six given for each problem, which was "close" to the solution they had used, or to

check a box entitled "none of these" and to describe their method. After three

fieldtests involving several hundred students and teachers, most "new" solutions

were catered for. According to their individually preferred methods of solution,

students and teachers each solved 24 problems, as set out in the following table.
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Number of Designed Level of

problems for difficulty

Section A 6 students easy

Section B 12 students & teachers intermediate

Section C 6 teachers difficult

Nonparametric statistics were used to establish construct validity and

reliability in the initial three fieldtests,(in Cambridge, England, and in Durban, South

Africa) and construct validity in Sweden and the U.S.A. Data from 342 South

African students yielded a Spearman split-half reliability coefficient, adjusted by the

Spearman-Brown formula, of 0.827. For construct validity, based on interviews

with approximately 20% of the students in each country, randomly chosen,

Spearman rank-order correlation coefficients between interview and questionnaire

scores were as follows:

South Africa Sweden U.S.A.

Speannan's r 0.67 0.71 0.71

Total N 342 106 74

Scoring of the MPI was done by assigning 2 points for a visual solution, 0 for

a nonvisual solution, and 1 point (occasionally needed) if the student checked "none

of these" or if the item was omitted. Thus for a total of 18 problems, the possible

Mathematical Visuality (MV) score was 36.

Sample Items from the MPI

For each of the 24 problems in the test, from three to six different solutions

were given, worked out in detail, in the questionnaire. The following are sample

items from the test, one from each section. (The number of solutions in the

questionnaire for that item is given in parentheses.)
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A-2 (6 solutions). Altogether there are eight tables in a house. Some of them have

four legs and the others have three legs. Altogether they have 27 legs. How

many tables are there with four legs?

B-10 (4 solutions). If you place a cheese on a pan of a scale and three quarters of a

. cheese and a three quarter kilogram weight on the other, the pans balance.

How much does a cheese weigh?

C-5 (6 solutions). Two candles have different lengths and thicknesses. The long one

can bum three and a half hours, the short one five hours. After burning for

two hours, the candles are equal in length. What was the ratio of the short

candle's height to the long candle's height originally?

Typical nonvisual and visual solutions to problem C-5

Nonvisual. I reasoned from the data given. After two hours, fraction of tall candle

used up was four-sevenths; thus three-sevenths remained. At this time,

fraction of short candle used up was two-fifths; thus three-fifths remained.

But these heights were equal. Thus three-sevenths of the length of the tall .

candle equals three-fifths of the length of the short candle. Thus the required

ratio is 5 : 7.

Visual.

After two hours It can be seen from the

diagram that the required

ratio is 5 : 7.

Data from Three Countries

As an economical way of displaying our data, we include the following chart

which shows the frequency distributions of scores from the MPI in the three

.countries. In Sweden a Swedish translation was used. All students were in grade 11

or equivalent at the time of the administration of the instrument.

0 0
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Comparison and Discussion

While, there are certainly visualizers amongst our mathematics students in all

three countries, i.e., students who are not reluctant to visualize, there are some

intriguing patterns in the international comparison which call for qualitative research

to explore issues such as those raised by Eisenberg. The South African study of

visualization was qualitative and involved in-depth interviews with students and

teachers, and observation in mathematics classrooms over an extended period. This

component was missing (or rather, has not yet been carried out) in the other two

countries.

Of a possible mathematical visuality (MV) score of 36, the median scores of

students in South Africa) Sweden and the U.S.A. were respectively 18, 14, and 20.

In the South African data, there was no significant difference between median

scores of boys and girls (20 and 18 respectively). However, the Swedish boys and

girls had median scores of 12 and 16 respectively, reversing the literature prediction

of higher visuality scores for boys, which we found in the American data in which

boys and girls had median scores of 22 and 16 respectively - a significant difference

according to the median test (x2= 4.849, df = 1, signif. P<0.025). The median

scores are summarized as follows. (Numbers of students are in parentheses.)

Medians South Africa Sweden U.S.A.

Boys 20(217) 12(66) 22(40)

Girls 18(125) 16(40) 16(33)

All 18(342) 14(106) 20(73)

Without qualitative research to suggest possible explanations for these

international differences, we can but guess that the much lower median MV score

for the Swedish students may have something to do with the fact that they are
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enrolled at a Science and Technology school, while the South African and American

schools were of general intake. Qualitative research in Swedish schools could shed

light on this issue. In the South African project, the visuality instrument (MPI) was

effective for its purpose of choosing students and teachers for the study, but some of

the richness of individual visualization, and student-teacher interaction in this

regard, was fathomed in the qualitative part of the research.

References

EISENBERG, T. (1994). On understanding the reluctance to visualize. Zentralblatt

fur Didaktik der Mathematik, 26(4), 109-113.

EISENBERG, T. and DREYFUS, T. (1991). On the reluctance to visualize in

mathematics. In W. Zimmermann and S. Cunningham (eds)Visualization in

Teaching and Learning Mathematics. Washington, D.C.: Mathematical

Association of America, pp. 25-37.

KRUTETSKII, V.A. (1976). The Psychology of Mathematical Abilities in

Schoolchildren. Chicago: University of Chicago Press.

PRESMEG, N.C. (1985). The Role of Visually Mediated Processes in High School

Mathematics: A Classroom Investigation. Unpublished Ph.D. dissertation,

University of Cambridge.

SUWARSONO, S. (1982). Visual Imagery in the Mathematical Thinking of

Seventh Grade Students. Unpublished Ph.D. disseratation, Monash

University, Melbourne.

WHEATLEY, G.H. and BROWN, D. (1994). The Construction and Re-

presentation of Images in Mathematical Activity Proceedings of the 18th

International Conference for the Psychology of Mathematics Education,

Lisbon, 29 July - 3 August, 1994, Vol. 1, p. 81.

3 -65 7 3



VISUALIZATION AS A RELATION OF IMAGES

Alejandro So lano Norma C. Presmeg

Florida State University Florida State University

77ie purpose of this research was to construct explanations of students' learning

dynamics that involve the use of imagery. Participants of this research are

undergraduate mathematics education majors. This paper focuses on how participants

used images and how they used relationships amongst these images (defined in this paper

as visualization) while making sense of new geometrical tasks.

Background of the Study
In an effort to become more knowledgeable about how to build on the strengths of

students' existing imagery and spatial visualization, for the ultimate purpose of improving

both research and instruction in this area, this research was designed. The value of this

research is based in the need to !cam about specific cognitive constructions that students

make at different levels while they are learning geometry. The participants in this study

were a group of students enrolled in an informal geometry course for undergraduate

mathematics education majors.

The purpose of the research is to construct explanations of situations where

students are engaged in geometrical activities that were specifically designed by one of the

researchers to facilitate the use of relation of images. However, participating students

could approach the tasks in a manner consistent with their own sense making, whether this

involved visualization or not.

Significant research has been reported in the area of geometry, and, more

specifically, in the area of visualization and imagery (Shepard, 1978; Bishop, 1980b;

Presmeg, 1986a; Presmeg, 19866, Brown and Wheatley, 1989; and Wheatley, Brown, and

Solano, 1994), however, the present study focuses on students' processes of sense making

during engagement in geometrical tasks.

Theoretical Framework

Current emphasis in mathematics education is being placed more and more on

student experience, analytical thinking, and creativity (National Council of Teachers of

Mathematics [NCTM], 1989; National Research Council [NRC], 1989; Everybody

Counts, 1989). Many of these recommendations can best be understood from a

constructivist perspective. And so, in the conduct of this research a constructivist

framework (von Glasersfeld, 1987) was used. From this perspective, mathematics should

be viewed not as a body of knowledge but as a construction of knowledge.
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Various constructivist proponents embrace the belief that knowledge construction

is a personal event that results from the interaction of the individual with objects or

phenomena occurring in a social context (von Glasersfel, 1989; Wheatley, 1991). This

framework helped the researchers to make decisions about the nature of activities used in

data collection, how those activities were conducted, and the nature of explanations

constructed during data interpretation.

Another important part of the framework was a set of definitions, negotiated

between the investigators, that are defined as follows,

Image: Image was defined as a mental construction of an object created by the mind

through the use of one or more senses, where the mind plays an active role (i.e., rotating,

translating, and transforming the image). Viewing an image in this manner, the mind is the

protagonist, playing the principal role. Indeed when we say "picture in the mind," we

may not think of the mind as having an active role for the uses of images as mental

symbols of reality that can be used to solve a problem. Rather we may think of "picture in

the mind" as a "fixed image" placed in the mind, nothing more - a view of imagery which

we wished to avoid.

Visualization: Although visualization is often referred to as the ability to mentally rotate,

manipulate; slide, and transform an object (Shepard, 1978), in this research, visualization

was defined as the relationship among images. We claim that the process of establishing

these relationships is what we would call logical thinking. In other words, in order to

visualize there is a need to create many images (i.e., more than a prototype image (Lakoff,

1987)) to construct relationships that will facilitate visualization.and reasoning.

Imagery: Imagery was defined as a collection of one of more images. The power of

imagery is that it may result in visualization that would help students create links which

facilitate meaning-making in learning geometry, as our data illustrate.

Methodology and Procedures

The emphasis of the research is on how students create imagery and how they use

it in the process of making sense of geometrical situations, thus a qualitative research

methodology is viable, which precisely highlights the process rather than isolated events or
happenings. In fact, the qualitative emphasis on process has been particularly beneficial in

educational research (Bogdan and Biklen, 1992), which supports our choice of
methodology.

The assumptions guiding this research were essentially taken from an interpretive

perspective (Erickson, 1986). Various techniques were used to collect data. The main

strategies included participant observations, and video recordings of participant's building

of three dimensional solids, and of formal and informal interviews. Two groupswere
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given voice in this research - participant students and the researchers. Four students from

the course MAE 4816 Elements of Geometry were selected with their willingness to

participate in the research. The main criteria for selection of participants were based on a

preliminary analysis of the scores of the instruments that were administered at the

beginning of the semester to this class. These instruments were: the Mathematical

Processing Instrument [MPI] developed by Presmeg in 1985, The Wheatley Spatial Ability

Test [WSAT], and the Visualization of Rotations Test [VRT] designed by Guay in 1976.

At the beginning of the semester these instruments were proctored by the researchers, one

of whom was the instructor of the class.

Each participant student was interviewed individually four times throughout the

semester with each session video recorded. In order to gain information about students'

process of sense making while engaged in geometrical situations, two instruments were

given to the students during the interviews. Students were asked to talk aloud as they

were solving the tasks. In addition, both the researchers and the participant had the

opportunity to interact and ask for either clarifications or explanations during the

interview, as needed. These two instruments, Dynamic Imagery Instrument A and

Dynamic Imagery Instrument B were developed by Solano in 1994, as part of the

research activities. These instruments were designed with the intention of providing rich

opportunities for the use of imagery and visualization.

Findings

In this paper, only a limited set of explanations will be described. Marc, one of the

participants, will be the focus of the findings reported, but when necessary, one other

participant's elaborations will be provided to support or shed light on the findings

reported. Reported findings represent only a small part of the analysis and interpretation,

thus in this paper only data using the first instrument (Dynamic Imagery Instrument A) are

used as evidence to support our interpretations..

For the following explanations, the reader will need to refer to Instrument A (see

Appendix A). When Marc attempted to solve the first task (on Instrument A) he saw the

problem and immediately responded, "it is one half of the square because these are two

[talking about the two shaded regions] halves of the middle triangle" that he described as

an isosceles triangle. To Marc this isosceles triangle was formed by the two black

triangles since E is the midpoint of side AB, therefore A AED and A BEC are congruent

and when put together we get A DEC. A different participant, Anna, made sense of the

same task in a different manner but she evidenced once more that the use of imageryand

the relationships constructed among these images were not only of high quality but also

they made possible her success in solving the task. Her rationale was " if I draw an

76 3 -68



altitude for A DEC, then each of the triangles A DAE and A CBE are one half of half of

the square, thus the shaded region must be 1/2 of the area of the square."

The main basis for the explanations that Marc constructed about the tasks 2, 3, 4,

5, 6, and 7, was an image of a diamond (that he introduced to help him making sense of

the tasks). He used subsequent images along with this one plus relationships amongst

these images to make sense of new tasks. The role of imagery in this case was a dynamic

one. In addition, his visualization was powerful during the process of making sense of a

new task. Following are a few examples to support this assertion.

In the second task Marc identified a shape he called "a diamond," and said, "it is

also one half, since we have a diamond in the middle, another diamond if we put together

the half to the left and right sides of the square, so we have two unshaded diamonds plus

two more formed if we put together the shaded triangles with sides AE with DG and EB

with GC." It was an interesting construction that Marc made, his use of imagery was very

dynamic and the transformations he made were quite sophisticated. He added, " since I

have four congruent diamonds, two shaded and two unshaded, therefore the area of the

shaded ones is 1/2 of the area of the square." Marc used his knowledge from task number 2

to inform his construction on task number 3 , thus his answer to that task was VI of the

area of the square. When he saw task 4, he immediately turned the page sidewise, since he

already had seen the previous picture from which he knew that a diamond had an area of

1/4 of the area of the square. Similarly, he made sense of tasks 5, 6, and 7.

Contrasting with Marc's approach to task 2, 3, 4, 5, 6, and 7, Anna approached

the same tasks using her knowledge from task I. The relationships of images continued

being the focus for further constructions [and so her constructions were somehow knotted

one into the next]. For instance, she transformed the square given in task 2 into four

congruent squares and thus she came up with a representation of four squares similar to

the one in task 1. The shaded regions were the opposite of the ones in task 1; however

that did not interfere with her sense making of task 2. In fact, she said, "in each square I

have one half of a fourth [meaning that each little square she constructed in task 2 has an

area of /. of the total square] shaded, therefore my overall area in the whole square (of

task 2) is 4/8, which is one half of the area of the big square." Similar explanations were

provided by Anna in tasks 3 through 12. Marc and Anna had used rich images and

relationships among these images to make sense of geometrical situations, however the

images used by each of them were different in nature. But that event did not stop them

from being successful in their solutions.

A different process was followed by Marc while making sense of task number 8.

The first action he took was to draw a line parallel to the base of the square (DC) through

57)L.11 ATkj,tpl
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the point F, and he said, " this is more than one fourth and less than one half' [referring to

half of the square]. He explained, "because if you take this triangle [pointing at the one

shaded above the line.he draw] and slide it down to the A FCG you won't have half " He

was quiet for few seconds and proceeded, "but this is one fourth" [meaning the right lower

corner]. After that he realized that the other triangle shaded [the one next to the shaded

square (lower right corner)] was actually one half of the fourth (1/8) so, he said, "it is 3/8

of the total area of the square." His approach to solving this problem proved to be a rich

opportunity for Marc to use and to relate images.

Somehow surprising was the following finding. Marc had previously constructed

[in problems 2 through 7] that a diamond has an area of one fourth. Also in problem 8 he

learned that each corner (formed by triangles similar to A FCG) has an area of 1/8,

however in problem 16 he was not able to use visualization as "relation of images," thus

the task became more perplexing. Instead of visualization, he chose an algebraic approach

which eventually misled him, so instead of getting 1/4 his answer was 7/18. In fact, he even

looked proud when explaining his algebraic thinking process.to get an answer, even

though he had used dynamic transformations of imagery previously with great success.

We also found that Marc was more relaxed and confident of his solutions when relying on

visualization.

A rather interesting observation of the researchers was that Anna's consistency of

elaborating on the previous tasks to help her make sense of the following one was very

useful for her when she reached task 16. The same can not be said of Marc.

Conclusion

The analysis conducted in this research suggests that imagery and visualization as

defined and described in this paper play a vital role in the processes used in solving

mathematical problems. Individuals can profit greatly if they are given opportunities to

form meanings that assist them in making sense of their mathematics. Based on our

evidence we conclude that visualization is an important component of this meaning-

making.
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COGNITIVE PROCESSING STYLES, STUDENT TALK
AND MATHEMATICAL MEANING

Neil Flail
Faculty of Education

University of Wollongong, Australia

This study investigated the impact of simultaneous and successive brain functioning
processes on Year 4 students' abilities to complete subtraction problems using multibased
arithmetic blocks and through written algorithms. This paper discusses the meanings
these students appeared to make as they completed these subtraction activities, and as they
talked about these algorithms and materials.

Brain Functioning
Simultaneous and successive processing refer to two methods of processing data within the

brain. The Lurian (1966a, 1966b, 1973) model of cognitive processing is a model of brain-action, an

information processing model, one concerned with the processes of analysing data in the brain rather

than with making inferences about intelligence, developed by Luria from his clinical case study work'

with brain damaged clients. Luria (1966a, 1966b) regarded simultaneous processing as involving a

synthesis of separate elements into a coherent whole, where all aspects of the situation are taken into

account. For example, perception requires simultaneous processing, as does reading and our place

value number system. Identifying meaningful relationships between a number of concepts and

applying these concepts together in a problein solving situation also requires simultaneous

processing. Simultaneous processing occurs then in situations where multi - attributed data are

involved either from external stimuli or from memory retrieval where earlier patterns of relationships

are recalled.

Luria (1966a, 1966b) posited successive processing as temporal, sequential and dependent,

involving the analysis of data in sequence, of necessity temporally organised, and where data are

linked serially and cannot be considered together in the one instant. The recognition of a musical tune,

with notes identified one after the other, is an instance of successive processing, as are finger

tapping, speaking and writing. Automatised routines and other cognitive activities not requiring

introspection, for example the arrangement of words in a sentence, or the solving of an arithmetic

algorithm, are based on successive processing (Kirby & Robinson, 1987).

Measuring simultaneous and successive processing

Reliable measures of simultaneous and successive processing have been widely described and

applied (Das, 1988; Das, Kirby & Jarman, 1975; Kirby & Das, 1977; Kirby & Robinson, 1987;

Solan, 1987). Examples of measuring instruments include the Number Span test where participants

listen to a series of from three to ten numbers, then write them in order. The Letter Span and Word

Span tests are also based on listening then writing. The Shapes test requires participants to select any

number of five components to make up a given shape, the Paper Folding test involves predicting

what a piece of paper with holes punched in it, will look like unfolded. The Matrix A test requires
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participants to copy shapes based on a 3 by 3 array of dots where each shape in turn is shown for five

seconds.
This model of simultaneous and successive processing has been used in a number of

investigations of cognitive processing, strategy development and teaching applications (Cummins and

Das, 1978; Das, Cummins, Kirby and Jarman, 1979; Das, Naglieri & Kirby, 1994; Elliott, 1990;

Molloy & Das, 1979; Kirby & Robinson, 1987). Classroom investigations have shown children as

young as four have simultaneous and successive processing skills (Angus, 1985; Elliott, 1990). The

impact of simultaneous and successive processing on aspects of language development, especially

reading, has been a common area for research (Kirby, 1992; Leong & Sheh, 1982). Other studies

have shown the model to have relevance in the teaching of school-level literacy and mathematics

across grade and age (Hunt & Fitzgerald, 1979; Molloy & Das, 1980; Merritt & McCallum, 1984).

Yet others have given more emphasis to the role of simultaneous and successive processing in

mathematical learning (Merritt & McCallum, 1984; Molloy & Das, 1980). Das (1988) claims

successive processing to be essential for reading achievement, but that in order to move to more

advanced levels of reading, simultaneous processing is required. He reported too, that simultaneous

processing was a good predictor of mathematics achievement and that successive processing was

unrelated to mathematical achievement. In particular, Das et al. (1979), and Kirby and Das (1977)

argue that neither simultaneous nor successive processing by itself is sufficient for high achievement

in school.
The present work seeks to study the relationship between elementary students' cognitive

processing styles, the way they solve subtraction algorithms, both in written form and through the

use of multibased arithmetic blocks (MABs), and the way they talk about, and the meanings they

appear to give to, these written and physical actions.

Method
The study reported here involved working with four Year 4 classes as they were taught

subtraction algorithms through the use of MABs, written algorithms and word problems. A series of

six tests[ were administered to the students in class groups. A principal components analysis was

conducted on these scores, and using a two factor analysis, the scores on the number, word and letter

tests were added to give a score for successive processing, with the sum of the scores on the shapes,

paper folding and Matrix tests giving a score for simultaneous processing. The median of these

scores was used to categorise all students as high or low, so four groups were formed: students who

were high simultaneous and high successive processors, students who were high simultaneous and

low successive processors, students who were low simultaneous and high successive processors,

and students who were low simultaneous and low successive processors. At the completion of the

period of instruction, students were interviewed as they attempted to answer subtraction questions

using written algorithms and MABs. These interviews were videotaped and later transcribed.

I The number, word and letter span tests, and the shapes, paper folding and Matrix A tests described earlier.
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Results and discussion
High simultaneous and high successive processors

The text below shows Kae, a high simultaneous and a high successive cognitive processor,

completing the written algorithm 653-472 to obtain the correct answer, 181.

R: What about that one?
S: Three take away two is one. Five take away seven you can't do so you trade, five, fifteen. Fifteen take

away seven is eight and five take away four is one.
R: Good. Why did you have to trade?
S: Because five is less than seven.
R: Now when you traded you crossed that out. So why did you cross that out?
S: So I could put the five at the top and put the ten from there and make fifteen.
R: So why is that five and not four or three or two or something different?
S: Because the next number down from six is five.

The transcript indicates Kae has high procedural knowledge. She described the process of

completing the algorithm briefly and accurately, including the need to trade and decompose. I take this

to be a reflection of her high successive processing ability. She also gives reasons for these steps, and

explains why she does a particular thing and not anything else. In particular, not only does she

identify mathematical properties (five take away seven you can't do so you trade), but she recognises

relationships (because five is less than seven), and establishes a logical explanation through the use of

because and so in various combinations. That is, she recognises mathematical relationships, and in

her interview provides extended explanations on various components of the algorithm, without

requiring continual prompting. I take all this to mean she has a good understanding, a relational

understanding, of the algorithm sequence, and the interrelatedness of all its components; and that

these qualities are possible because of her high simultaneous processing capability.

When asked to complete 547-169 with MABs, she did this quickly and correctly, her

procedures appear to have been automatised, which I interpret as another instance of high successive

processing. Kae appeared very able to describe her working processes, and provided extended

explanations. For example, she first described what to clO Take one of these away, then gave it its

technical term trade, then unasked provided a reason for this there's only forty there. This high

language proficiency, and the giving of explanations beyond the immediate answer to the question

asked, seems a feature of high simultaneous processors. Kae easily identified each step in the MAB

process, she recognised the need to trade, and described the process. She identified facts or skills,

she recognised relationships, and she elaborated on these: all signs of high level simultaneous and

successive processing. When she repeated this second question using pen and paper only, she had no

hesitation in predicting that her answer was the same as when she used MAB materials.

Of course not all high simultaneous and high successive processors showed these capabilities.

For example, Lin is able to give only procedural reasons in explanations. She does not give reasons

involving mathematical relationships. In explaining her method for 547-169 Lin claimed that you

could not do 7-9, Because if you try and take nine from seven you can't do it. And she continued in

this vein of calling up rules But if you do it then you come up with the wrong answer, rather than

providing a mathematically based explanation. At the same time Lin described the correct procedure,
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and apart from a simple number bond error would have obtained the correct answer to 547-169.

Even though there were exceptions of this kind, in general, students who are both high simultaneous

and high successive processors appeared to have highly automatised procedures, to be able to explain

their actions by referring to mathematical relationships, able to explain why as well as how, and to be

able to link the use of MAB materials to written algorithms.

High simultaneous and low successive processors

Eve is a high simultaneous and low successive processors, here she is using MABs to calculate

746-382 (answer 364). Eve appears able to use the materials reasonably well, in particular, after

completing the calculation for the units place value, she has no hesitation in exchanging 1 hundred for

10 tens. But she does appear to have some procedural difficulties. For example, she completes the

subtraction with the MABs, but does not recognise she has the answer and has to be coaxed by the
interviewer.

R:
S:
R:
S:
R:
R:
S:
R:
S:

R:
R:
S:
R:
S:
R:
R:
S:
R:
S:

Can you tell me what you have got in front of you there now?
Seven hundred and forty-six.
Good, what do you have to do now?
Take away three of these and eight of them and two of these.
Off you go and do that.
Hold on, just before you do that, what have you got there now?
rve got fourteen there.
You've got fourteen. How did you get fourteen there?
Well, I took away one of these flats and I got ten longs and now I'm
taking away eight of them.
So you go ahead and do that, all right.
You read out your answer for me.
Three hundred
Which is your answer?
I haven't done it yet.
No, you are right, it's just that that is your answer.
How many units have you got there?
No units.
Are you sure?
Four units.

746-382
746 in MAB
Identification
Identifies the subtraction
correctly
Using MABs
14 tens

Identification and explanation
Writes 360

Uncertainty

Not identifying step she is up to,
or all MABs she has

Not identifying

Identification
Writes 364

These procedural difficulties continue when Eve is asked to repeat the calculation using a

written algorithm. She immediately takes the smaller digit from the larger, suggesting that she has not

automatised the correct procedure. A plausible interpretation of this and of the above text suggests

that Eve's low level successive processing capacity has an impact on her ability to remember and

reproduce the procedures necessary to solve algorithms, and has hindered her in automatising such

procedures. Yet her ability to use the MABs relatively well, and to provide elaborate descriptions of

what her actions on the materials, suggest that her high simultaneous processing capabilities assist her
here.

From this and other interviews it appears that high simultaneous processors who are also low

successive processors will generally be quite able when using materials, and will often give elaborate

and correct descriptions and explanations as to what they are doing. But their low successive

processing may lead to mistakes in the procedural aspect of what they do. For example, even though
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they give the correct description for using MAB materials, they may not actually put that description

into practice, and without materials they may perform written procedures incorrectly.

Low simultaneous and high successive Nocessors

Here is the case of Anna, a low simultaneous and high successive processor, who is attempting

the written algorithm 547-169, and obtains the incorrect answer 398. She begins well by taking one

of the four tens to the units column, making the 4 into 3, and the 7 units into 17. Or as she says You

go over to the four and you take a ten off there and put it with the seven and call it seventeen. She

mentions the terms regrouping and renaming, but does not identify trading. When asked for a reason

for this action she was silent.

S: Because seven is a smaller number than nine.
R: So you can't take nine from seven so what do you do then?
S: You go over to the four and you take a ten off there and put it with the seven and call it seventeen.
R: Now what is that called when you do that?
S: Regrouping, renaming.
It: There is another word too. Can you think of another name? You said regrouping didn't you?
S: Yes.
R: And you said renaming as well. That's good So now why did you (pause) You had five here (5

hundreds) and you wrote four (above the 5), so why did you write the four there?
S: Because (pause).
R: You are right. Now I'm just asking you the reason. There was five there and you write a four here and

why did you do that?
S: Because the four you can't take away from six.
R: So you had a six here and a four here. What about this three?
S: That's for the seven.
R: So what subtraction are you doing in this column here? Are you doing four subtract six or three

subtract six?
S: None. I'm doing fourteen.

The researcher reassures her, you are right, she says the four you can't take away from six,

which has the digits reversed but identified the correct place value column. She knows that in

someway the 3, renamed from 4 tens, is connected to the seven units, and says that's for the seven.

The next question gives her a hint, Are you doing four subtract six or three subtract six? She then

says I'm doing fourteen, and reasserts this in the next question. She then subtracts 6 from 14 and

writes 9 as her answer. Here the student has the procedure generally correct, she has traded and

decomposed correctly, and has the correct digits in the appropriate positions. She is able to explain

the steps in the procedure Because I had to take a ten off the five and put it with the four to make it

fourteen, but it is a procedural explanation not one calling on mathematical relationships. Her first

error is subtracting from 14 instead of 13, and then she makes a mistake in the subtraction facts. On

the whole, Anna seems reasonably able in performing the subtraction algorithm, but she seems to

have little understanding of why her actions are appropriate. In the next section of the interview, she

repeated 547-169, but using MABs this time. Anna recognised that 7-9 in the units position creates a

difficulty, she knew the 7 has to become 17, so she goes to the bank for an additional 10 units. But

she does not trade. This is repeated later when she recognises the difficulty with 4-6, and goes to the

bank for 10 tens. She eventually gives the incorrect answer 488. There are two problems for Anna
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here. Firstly, she has a procedure but it is incorrect, and secondly she appears to have no

understanding of either what trading is or of its proceduralisation.

Anna has considerable ability with written algorithms and frequently completes written

algorithms correctly, including three digit subtractions with trading. The 14-6 instead of 13-6 is likely

to have been a chance error or nervousness at being interviewed, rather than a regular strategy. That

is, in spite of the algorithm errors in the interview, Anna seems to use her high successive processing

skills to enable her to correctly answer subtraction algorithms. But Anna appears to have little

knowledge about the use of MAB materials - she has not automatised the procedure, and is unable to

use the materials effectively. I take this to be a case of low simultaneous processing being insufficient

to interpret the use of MAB. That is, I am claiming that low simultaneous processors will have

difficulty in using MABs effectively, and in establishing links between actions on MAB materials and

a written algorithm intended to correspond to these materials and actions. Data from other low

simultaneous and high successive processors appear to support this interpretation.

, If : 11 , L.. 1)1.

Students in this category appear to be the least able school mathematicians. For example, Andy

frequently subtracted the smaller digit from the larger, simply disregarding place value. Within

adjacent algorithms he would answer one using a correct procedure, and in the next revert to his

smaller digit from the larger strategy. And in the problem solving questions, after he had written the

algorithm corresponding to the word problem, rather than solve the algorithm, he would literally use

a tally where one stroke was used to represent each number in the minuend, and the appropriate

number were then crossed off. For example, in the problem where a milk truck delivers to 96 houses,

but has only been to 59, he calculated how many remained by writing ninety six strokes and crossing

off fifty nine of these. His class workbook showed that his algorithms were correct, and that trading

has been used, at least according to marks on the page. Here he is completing the written algorithm

547-169 and obtaining the correct answer (378), during the interview.

R: Eventually when you crossed out the four (4 tens) you had a three here didn't you? So what was the next
subtraction you had to do?

S: Three take away six you can't do so 1 crossed off the five, put a four and put a one next to it and take
away six equals seven.

R: Now when you cross five off why do you put four? Why don't you put three or two or one or
something late that?
(pause)

S: Because the four goes there and whatever you put a one next to it, whatever you crossed off.
R: What is that called, sometimes people use a special name for it? You cross the five, you write four and

then you move one over there. What is that called?
S: Trading.

In the above text, it seems that Andy has a good understanding of the procedure. He recognises

the need to trade, carries out the correct written actions and obtains did correct answer. However,

when asked to explain why the 5 hundreds became 4 hundreds, and not some other number, there

was a delay before he respotided, and his explanation was (b)ecause the four goes there. This is not

an explanation, but reference to a rule or statement which is used to support itself, so the argument is
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circular. It almost certainly indicates that even thotigh Andy was able to recall and identify the correct

instance of wade, he had little meaning of the concept beyond the written action. Indeed his class

workbook indicates he is likely to make many procedural errors in subtraction algorithms. When he

was asked to repeat the question with MABs he used them as counters ignoring place value, so he

used 5 units to represent 500, 4 to represent 40 and 7 to represent 7. This incident also suggests that

he had little knowledge of the materials and how they related to algorithms, and that he had little

conceptualisation of what the materials or his actions on them meant. The MAB and actions on them

seem to make no sense to him whatever.

Other low simultaneous and low successive processors also appeared to have declarative

knowledge, they could say what had to be done but could not apply it. In particular, they made

procedural errors on a regular basis, and their apparent inability to automatise the procedure is

consistent with low successive processing. And their low simultaneous processing meant they did not

link the materials to the written algorithm, making it problematic for them to understand why

algorithms were structured and completed the way they were. Their language was generally narrow

and unlinked, with few elaborations and with little reference to mathematical relationships.

Conclusion
In analysing these and other transcripts, there appears to be a pattern of mathematical skills and

understandings that reflects the cognitive processing style of learners. In particular, high

simultaneous and high successive processors appear likely to have automatised procedures, to have

insights into mathematical relationships, and to understand both how to complete a procedure and

why this is the case. They also appear likely to link actions on materials with written algorithms, and

to have a good chance of recognising and correcting errors. High simultaneous and low successive

processors seem to have insights into mathematical relationships, and can link actions on materials

with written algorithms, but may have procedural weaknesses. That is, they have a good chance of

understanding why, but are less effective when it comes to how. Low simultaneous and high

successive processors are likely to have automatised procedures, but this ability to perform is not

accompanied by knowledge of why. They appear unable to recognise mathematical relationships, and

so are unable to link actions on materials to written algorithms. Low simultaneous and low successive

processors are likely to be inconsistent in their completion of algorithms and are unlikely to

understand the structure of an algorithm. They have declarative knowledge, but appear unable to

proceduralise it and are unlikely to have insights into mathematical relationships. They seem to

interpret actions with materials and written algorithms as two unrelated sets of activities.

Research into simultaneous and successive processing in classrooms has largely been confined

to language and arithmetic activities, so there is little data to indicate if these constructs are consistent

across all school mathematics, and there is even less one can say about other school curriculum areas.

From a practical classroom perspective this study suggests that some students will have difficulty

linking their actions on manipulative materials to a written representation of these materials and

actions. Teachers will have to be particularly insightful and sensitive in encouraging students to

explore materials, in establishing procedures with both materials and algorithms, and in discussing

3 80



various representations, the links within procedures, and the relationships between different
representation systems. From a research perspective there is need for further studies to investigate the
impact of various levels of simultaneous and successive processingon mathematical learning.
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LISTENING BETTER AND QUESTIONING BETTER: A CASE STUDY

Carolyn A. Maher, Amy M. Martino, and galak.STAnigui

Rutgers University

New Brunswick, New Jersey, USA

This paper describes the changes in the mathematical behavior of a twelve-year old
student, Jeff who has been observed as part of a longitudinal study of how children
build mathematical ideas. Specifically, we examine his listening to and questioning of
other students in small groups and the evolution of his mathematical behavior during
his exposure to constructivist classroom settings where teacher/researcher questions
are guided by student thinking. Over a span of seven years, changes in Jeffs manner
of working with other students have been traced showing movement from focusing
on reaching a correct answer to becoming more attentive to the mathematical ideas of
others. Certain conditions contributing to the movement towards student led
mathematical discourse in the classroom will be discussed.

They never told us the answer! Yeah, you never tell us the answer.
No, like, I remember, in third grade, the thing with the box, with the
corner cut out, and I always wanted to find out how many black
marbles were in there and how many yellow marbles were in there, but
you never opened the box!

Jeff, grade 7, March 18, 1994

Certain features are typically associated with the teacher centered classroom. Vinner (1994)

describes student behavior and how it can focus on pleasing the teacher. Once students find the

answer that elicits a positive response from the teacher, they will try to repeat that answer in

situations that appear mathematically similar. What appears to be meaningful mathematical dialogue

may only be what Vinner calls "pseudo-conceptual" behavior. The teacher, motivated by pressures

other than mathematical understanding, may accept the students' answers as evidence of

comprehension, and move on with the lesson. The direction of mathematical activity in such

situations lies mainly in the hands of the instructor. The class "moves along" as students respond,

but this motion does not necessarily indicate mathematical growth on the part of the students. The

students may simply be responding to cues instead of building mathematical ideas which they can use

when the teacher cues are not present
In the teacher-centered classroom, the instructor serves as the social and mathematical

authority of the classroom group. Jaworski (1994) describes situations where teachers are conscious

of this position of power and use their awareness to create a different kind of classroom -- one where

'shared meanings are created. The teacher overtly attempts to avoid imposing her meaning upon the

students, opening the way for students to construct their representations of mathematical knowledge.

This complex process involves constant decisions upon the part of the teacher as she interacts with

students. In many situations, any statement on the part of the teacher may interfere with the student's

mathematical development In any case, the "culture" created in the classroom determines the nature
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of the interactions. Students will invent shared meanings if they believe that their meanings have
value.

This "culture" has been described by many, including Davis (1989). Gooya (1994) describes

the difficulties inherent in forming this culture. The teacher must play a "special role" in creating the
environment -- long hours of reflection and lessons where only a few problems are covered may be
necessary to change the nature of mathematical "authority." Elements of this change have been

detailed (e.g., Pantozzi, 1994; Jaworski, 1994), where the teachers alter the nature of their questions

with the aim of creating a problem-solving culture centered upon student thinking.

During a longitudinal study of children's thinking, we have observed changes in students'

questions of each other when a group of students grows accustomed to the lack of specific teacher

prompts. The teacher/researcher instead models open-ended questions that are based upon the
students' thinking, forming a distinct classroom culture. Over time, students begin to question each
other in the same manner, probing each other's thinking with questions instead of requesting

information or specific answers. The teacher/researcher's role recedes as the students drive the focus
of inquiry and use their work as the starting point for additional exploration. (See Martino & Maher,
1994.) Student-to-student questioning moves the activity forward; the students move into a position
of mathematical authority since they do not look for the researchers to hand down knowledge. This
case study focuses upon one student, Jeff, and the changes he makes in his listening to and
questioning of other students. Examples of Jeff's interaction with other children in group problem-
solving situations illustrate the transitions that accompany exposure to a constructivist classroom
setting.

Background
This case study of one student arises from a longitudinal study investigating how children

build up mathematical ideas as they are engaged in problem tasks with other students. The study
takes place in a working class school district in the United States that has been the site ofa teacher
development project in mathematics over the last 10 years. Outside of their daily classroom schedule,

students in this district participate in problem-solving sessions where they are given opportunities to
do mathematics in an open environment, working in groups for extended periods of time.
Researchers develop problem situations for the students, but the direction of the activity is heavily

influenced by the students' questions and interest. The classroom situation is designed so that
children are free to build solutions, discuss their ideas, and negotiate their conflicts. No "lesson" as
such is taught by the researchers. One set of students has been studied continuously, as a group, for
the past 7 years. This group has remained largely intact over this time, allowing the students to grow
in familiarity with their classmates. Their development as a group and as individuals has been traced
by researchers. Data on each student has been continuously collected over this time; one student was
selected for this paper.
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Methods and Procedures
In studying how children develop mathematical ideas, problem situations are developed by

the teacher/researchers. The problem is presented to a class of students and they are videotaped as

they discUss the problem in groups. Teacher /researchers observe the students as they interact,

question the students after they have begun working towards a solution, and facilitate discussion.

Their questions are based upon the students thinking, not upon a predetermined course of action.

Thus a session may extend to several hours or extend to a number of days or months. As each

session is videotaped by two or more cameras, researchers follow the students' discussions and note

elements of the students' matheniatical activity. After the videotapes are transcribed, they are
examined for students' growth in mathematical thinking, and are used to develop future classroom

sessions. Student work, the field notes, the transcript, and analysis by researchers and graduate

students comprise a video portfolio of the development of the group and of each student.

Data Source
This research was motivated by data collected over the course of a longitudinal study that is

now in its seventh year' Classroom sessions and interviews with students over these 7 years were

videotaped, transcribed, and analyzed by researchers and graduate students. The classroom sessions

consist of the team's analysis of student discussions; of students working in groups on a problem

task and recording their findings; of students sharing solutions and/or questions with the class; and of

researchers interacting with the groups of students. Five vignettes focus specifically on Jeff in the

second, third, fourth, fifth and seventh grades, respectively, and of his interactions with group
members and researchers. These represent samples of data focusing on Jeff doing mathematics over

the course of the entire longitudinal study. 2

Theoretical Orientation
We have found that under these conditions described above, profound changes can occur in

the location of mathematical authority in the classroom. For example, interactions and questions

between students are altered and classroom settings where students guide mathematical discourse

without direct teacher instruction are evident.

The shift from teacher authority to student authority over mathematical discourse transpires

over an extended period. For the shift to occur, certain elements must be present on a consistent

basis. Teacher/researchers model the kind of questioning that is based upon students' constructions.

Over time, students begin to develop similar requests for justifications of solutions by asking: "Can

1 This research is supported in part by a grant from the National Science Foundation #MDR-9053597 to Rutgers, the
State University of New Jersey. Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Videotapes are available by writing to Carolyn A. Maher, Rutgers University, Graduate School of Education, New
Brunswick, Ni 08903, USA.

92 3 -84



is

you convince me?" or, "Tell me how you got that answer." At first, questions such as these are role

imitations; gradually, however, they evolve as a real expectation of the culture that is being created.

Initially, students may develop the mathematical ability to explain their reasoning to each

other, but may lack the "social graces" necessary to lead the mathematical discourse. (See Wilkinson

& Martino, 1993.) Students also seem to pass through stages (see table 1, below) where they are not

able to listen to another student's explanation while they are constructing one themselves. As a

result, group disagreements, which can lead to productive problem-solving activity, can also result in

a particular student dominating discussion and silencing opposition on the way to arriving at the

correct answer. Constructive group discussion and shared leadership typically predict problem-

solving success, but the absence of such elements does not constitute a "dead end" for problem

solving. We conjecture that some students may first revert to modeling the central authority of the

teacher-centered classroom before they embrace the culture of shared responsibility that the
researchers have modeled over time. In addition, constructing mathematics and developing social

graces simultaneously may be difficult for children.

The changes manifest themselves most clearly in the kind of questions students ask each

other, the nature of the responses they receive, and the type of interaction between students in
groups.

Table 1 summarizes the behaviors we have observed in these three areas.

One-way dialogue -- Students answer teacher/researchers' questions, make reports of
findings, request and receive information from each other,. New ideas depend largely on
teacher/researcher questions.
Exchange of Information - Students ask each other to perform tasks, ask questions
of teacher/researchers. Input from other students is considered as students construct
ideas.
One-way explanations - Students explain reasoning to each other and to -
researchers, but may not attend to cognitive needs of listener. Students reorganize ideas
based on teacher/researcher questions.
Collaboration - Students attempt to convince others of their reasoning, and may use
each other's comments to evaluate their explanations. Students begin to construct ideas
without teacher/researcher 'questions.
Mutual awareness - Students make arguments and counter arguments, and ask
questions of each other that take into account each other's previous statements -
dialogue is interactive. Teacher/researcher questions often unnecessary.

Each questioning behavior listed builds upon the previous behavior, but the appearance of

each is not necessarily sequential. Some or even all the behaviors may occur during one classroom

session.

When students develop mutual awareness of each other's arguments, much, of the teacher

questions that cause students to reorganize their thoughts are asked collectively by the students

themselves. Cobb (1994) suggests that shared authority is critical to mathematical learning; we have

found that while students may not ask questions of each other "politely" at first, they can develop the

skill over time. Part of these changes may be developmental; the children may grow more mature.

However, maturity alone may not create the ability to lead the mathematical discussion; exposure to
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the culture of questioning and listening must also occur. At that point, student questions can drive the

mathematical activity in the classroom.

Results
Limitations in space prevent a full description of the events. However, representative

episodes are reported that characterize Jeff's behavior over the interval under study. These are

presented as vignettes and are selected from classroom problem-solving activities during grades two,

three, four, five, and seven.

Vignette 1. Grade 2. October 23. 1989: Jeff directs other students.

Jeff is observed working in a small group on a story problem and directing another student
how to solve it.

Mike: 1,2,3,4,5,6,7.
Jeff: Now add 5 [He moves 5 stones toward Mike.]

Mike: [counting the 5 stones] 1,2,3,4,5.
Jeff: Now count 'em.

Mike: 1,2,3,4,5,6,7,8,9,10,11,12.

Jeff then directed the other group members to record the same solution.

Jeff: Whatcha get for the number of pencils? [points to Mike]
Mike: Seven
Jeff: Whatcha get for the number of pencils? [points to Aaron]

Aaron: Seven
Jeff: What did you get? [points to Michelle]

Michelle: Seven

Vignette 2 Grade 3. December 6. 1990 Jeff gives a give one-way explanation.

The students have been given a "mystery box" containing ten marbles, some of which are

yellow, some of which are black. The students are unable to open the box, but can sample the
contents by shaking the box and looking at small hole in the corner of the box 20 times. Jeff's
solution differs from that of his partner's:

Jeff: 13 [yellow] and 7. [black] [The result of their sample.]That means we have 7 yellow
and 3 black

Jamie: We don't have 3....7...
Jeff: That would be the answer though. Believe me. That would be right, though. We

think it's seven yellow...
Jamie: Yellow... (grabs pen) I'm putting it in!

Jeff: Seven yellow and .. what is that?. [Jamie tries to write a different answer.]
Jamie: Yellow?

Jeff: Yeah, seven yellow marbles... and three...
Jamie: No, we don't have seven here! [She points at the 13 yellow marbles they sampled.]

Jeff: Jamie, common sense, look, 1,2,3,4,5,6,7, count that and it's seven, if there's 13
here, see this would be all seven, and this would be a three. That would be seven and
three.

Jamie: OK. OK. I think there's...
Jeff: That's what we found.
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A few minutes later, Jamie proceeded to erase Jeffs answer and change it to her own. She

explained her solution to a researcher while Jeff turned his head away.

Vignette 3. Grade 4. February 6. 1992 Jeff chooses the creative role for himself.

As Jeff and his partner, Michelle, build all possible towers five cubes tall when they have

available cubes of two different colors, Jeff assigns himself as the role of creating new towers and

his partner the role of making an "opposite" [colors reversed for the same position] for each of hii

designs.

Jeff: I'll make them and you make the opposite. This is easy...make the opposite.
Michelle: Why do I have to do it?

Jeff: Because I'm making the new ones. I can't do both.

Vignette 4. Grade 5. April 2. 1993 Jeff collaborates with other students.

In Grade 5, we see Jeff ask questions that focus on the solutions of other students.

A group of students is trying to determine how many different combinations of 4 toppings

could be placed on a pizza. The researcher asks a question about their method. Jeff elaborates the

researcher's question.

Researcher. I don't see... how you are going to consider all the possibilities?
Stephanie: Yeah, well no, because in this one nothing's going to be mixed, but in this one,

something is mixed. [Two toppings mixed together on a pizza.]
Jeff: How come in this one, nothing can't be mixed?

Stephanie: Nothing is mixed because this is half a pizza.
Anktir: Yeah. Half.

Jeff: So why can't you just make this like, um, [topping 1], "[topping 2] say...
Reseaither. That's my question.

Vignette 5. Grade 7. March 18-21.1994 Jeff listens to and questions other students.

Over time, we have observed Jeff modify his interactions with other students, his questioning

of other students, and his interaction with the researchers. His experience deserves attention since he

has focused on his personal search for mathematical meaning, frequently disregarding the ideas of

others. Observed changes in his questioning that reveal greater interest in the ideas of other students

are indicated in the March 1994 episode.

Students were given two 6 sided dice and were asked to invent a "fair game" based on the

rolling of the dice. This required that they determine (a) which sums could be rolled, and (b) the

number of ways each of the sums could occur.

On March 21, Jeff expressed belief that he had solved the problem. In his interaction with the

other members of his group, he refers to their work from March 18. Jeff reaffirms his desire to find

the correct answer over others' objections.
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Student 1: Should we explain this to somebody?
Jeff: We'll explain it when it goes up.

Student 2: Yeah.
Jeff: What's two? [Which rolls result in a sum of 2?)

Student 1: Oh, let me guess who's going to explain it, hnunnun?
Jeff: All of us.

Student 1: Hnurunm. He [Jeff] doesn't let anybody explain.
Jeff: You were just standing there, you weren't doing anything, what do you want me to

do, just sit there and not do anything?

As the session continues, Jeff realizes that his group has not considered all possible
combinations of dice that result in the sums from 2 through 12. His group has not included (1,2) and

(2,1) as distinct rolls of the dice. Jeff, listening to another student, realizes the omission.

Jeff: Unfortunately, he [referring to Student 4, below] makes somewhat sense because
actually you do have two chances of hitting it. [Rolling a sum of 3.]

Student 2: What?
Jeff: See look, because if you roll, if this die might show a one, and this die might show a

two, but next time you roll, it might be the other way around
Student 3: Look Jeff.

Jeff: And that makes it two chances to hit that, even though it the same number, it's two
separate things on two different die. (1 on one die, 2 on the other and vice versa]

Student 3: Therefore there's more of a chance. Therefore there's two different ways, therefore
there are...

Jeff: And that that likes blows up our plan..
Student 3: Therefore there are two ways to get three.

Jeff: And that just screws up everything we just did worked on for about the last hour.
[He smiles, perhaps recognizing why the earlier group solution was faulty)

Jeff reconciled his misconception by paying attention to the idea of another student who

suggested that the outcomes (2,1) and (1,2) were distinct. Jeff then considered whether the

outcomes (1,1) and (1,1) were also distinct. He turned to a member of his group (Student 2) to share

with her the other student's reasoning:

Jeff: Well, then if, couldn't two come up twice then? [That would be (1,1) and (1,1).]
Student 4: No because Jeff, one on one die and one on the other die is still the same thing.

Jeff: Yeah, even if you just... OK...
Student 4: Yeah, there's still one in one and ...

Jeff: Yeah, if you do switch, yeah, because it seems like even if you do switch, it will still
be like the same thing. [The roll (1,1) will be unique.]

Student 2: Yeah, but that's the same thing as that... [Why are there not two distinct (1,1) rolls?]
Jeff: No but this, look, on this one you have two and one, but you actually have to move

the die to hit one and two, but on this is doesn't matter, you can just, do you know
what I'm trying to say here?

Student 2: Sort of
Jeff: That's good
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Conclusions and Implications
The story of Jeff and his growing independence in mathematical thinking suggests that

students can and do indeed listen to the thinking of other students, reflect on their own and on other

student ideas, and share them with others. Instruction, guided by close attention to student thinking,

can make possible the creation of a "culture" where students play a large role in determining the

course of mathematical investigation. The development of this culture may require considerable time,

effort, and patience as teachers and their students work to redefine earlier traditional roles. The study

of Jeff suggests that the effort may well be justified. It is interesting that Jeff recalls the marble

problem after four years! What might have contributed to Jeff's changes was the creation of a
classroom culture that left open to students discussion of ideas. Reliance upon reaching a "correct

answer" made possible by teacher directed questioning may appear beneficial when students produce

correct responses. However, declines in students' ability to think and reason critically belies this

notion. Students who answer teacher questions correctly may either be responding to cues, or may

already have developed the idea independent of teacher intervention. They may not be able to think

and question based upon their own ideas. Students can learn to listen and question better, and lead

mathematical discussion rather than follow it, through their exposure to a classroom culture that
values student questions.
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CLASSROOM COMMUNICATION:
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This is a report of research in progress. A survey aimed at identifying features of quality
teaching, followed by analysis of lessons which were aimed at demonstrating those features in a

multi-media resource, led to a research focus on one of those features: Communication. It was

noted that numbers of interactions were quite uneven, and that while some teachers did little to

remediate this situation, others attempted to call on all students. When teacher educators

watched a videotaped mathematics lesson, their written critiques regarding communication were

surprisingly contradictory. This paper outlines some issues raised by this diversity.

Multiple perspectives
Over the past three years, we have been making a multi-media program and

researching its user. This CD-based resource for learning about teaching mathematics
includes a variety of media that provide information about different aspects of the same
phenomena, such as videos of lessons, transcripts of the verbal communication, films of
pre- and post-lesson interviews with the teachers, teachers' notes, readings pertaining to
the styles of teaching used and specific features of the classroom climate, graphic
representations of the classroom interaction, and other components. Our research is
focusing primarily on how undergraduate students and teachers use the program to
observe and analyse classroom interactions.

One of the major areas of concentration in the resource, and the focus'of this paper,
is Communication. This was identified as an important component of teaching in the first
stages of our research project, when planning for filming the lessons commenced with a
literature search on aspects of'good teaching as well as the implementation of a survey
aimed at identifying common perceptions of the features of quality mathematics teaching
(see Sullivan & Mousley, 1993, and Mousley & Sullivan, 1994).

There were six major groups of components identified: Building understanding,
Communicating, Engaging, Problem solving,. Nurturing and Organising for learning.
These should not be thought of as independent factors each is both dependent on
and constitutive of the others. For instance, responses to the questionnaire
demonstrated that communication is vital in organising for learning and engaging
students as well as nurturing their all-round development and mathematical problem-

1 The research project "Features of Quality Teaching' is funded by the Australian Research Council, the Australian

Catholic University, and Deakin University.
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solving. Most importantly, communication was thought to be essential for building
mathematical understandings, just as the other factors were. Thus the results of the
survey could be represented as in Figure 1.

Building
understanding

Materials
Prior knowledge

Mathematical thinking
Connections

Conceptual development
Reflection
Sequence
Review

Organising
for learning

Nurturing

Ability levels

Engaging

Active

Communicating

Pupil to pupil

Problem
solving

Clear purpose Non threatening Personal discussion Investigation
Clear instruction Rapport Enjoyment Sharing Open-ended

Class organisation Relationships Real world strategies Challenging
Questions Goal setting Motivation Cooperative Posing

Assessment Enthusiasm Variety Recording

Figure 1. Interrelationship between some features of quality mathematics teaching.

During the development of the multimedia resource, thinking about how to
encourage users to make logical connections between different representations of
particular episodes provided opportunities for us to discuss and investigate a number of
issues about communication in mathematics classrooms. For instance, when we
graphed the number of interactions of each classroom participant for one lesson, and
discussed possible reasons for variations in the results, further characteristics of the
discourse were brought into question. These included, for instance, the total time of
interactions between teachers and individual students, the types of interactions (such as
a student posing a question or responding to a teacher's question), the qualities of those
interactions, how such qualities contributed to the development of students'
mathematical understandings, and whether other factors such as gender had been
brought into play.

This led to decision-making about how we could provide for users wishing to
explore such questions about the classroom communication using a variety of media,
without our actually directing users to research topics that were essentially "ours".
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Communication
Attention to language factors in mathematics education has long been recognised

as an important focus for the improvement of mathematics pedagogy (see, for instance,

Emori, 1993; MacGregor, 1994; Mous ley & Marks, 1991; Thomas, 1994). However, there

is a recent surge of new psycho-socio-linguistics interest with the recognition by post-
structuralist theorists of the force of discursive practices and the ways in which people
are positioned through those practices. Kenway, 1992, for instance, notes that school

and non-school discourses, in concert and in contest, construct students', teachers',
principals' and parents' identities in multiple and shifting, yet patterned, relationships of

dominance and subordination.
Similarly, in practical contexts, teachers are now being urged to attend to

individuals' explanations and questions, to take language-based "constructivist"
approaches to the teaching of mathematics, and to involve their students in one-to-one,
small group and whole class discussions. A National Statement on Mathematics for

Australian Schools (Australian Education Council, 1991) epitomises this change, with

claims like,

The process of developing and building up mathematical knowledge through describing,
questioning, arguing, predicting and justifying almost always requires a sharing of ideas. The

productive sharing ideas depends on the clarity with which one can express oneself.
Mathematical communication skills are needed In order to understand, assess and convey ideas

and arguments which involve mathematical concepts or are presented in mathematical forms. (p.

13)

Such summarative recommendations of policy documents, however, do not hint at
the complexities of the phenomena, or at the dilemmas that these present to teachers as
they control classroom discourses and thus position themselves and students within the
social arena. Two incidents during the preparation of this section of the multi -media
program further raised our awareness of the complex and often contradictory nature of

classroom discourse.
"George has a lot to say". When we were constructing the graph of the number

of interactions for each child, we noted that one student had had a lot more to say than
any other student, in each of the two lessons for his class. On asking the program to play

all of his contributions one after the other, we found that George raised his hand
frequently and that the teacher and other students regularly called on him to make
opening remarks on a topic. His comments and questions, however, while serving the

purposes of getting conversations started and keeping them moving, were relatively low-

level so he had not made as valuable a contribution to the learning as had some other
students with much lower numbert of interactions.

"But Jenny was Involved". A group of graduate students trialing the program
noted that one of the teachers had directed a question to a student who had played no
previous part in the class discussion. The girl had appeared flustered and had given a

very hesitant answer. Later questioning by the teacher in a one-to-one situation
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revealed that the child had had a good understanding of the concept and problem being
discussed.

A third incident led to further research on this topic. After some of the lessons had
be filmed, but before they were committed to CD-ROM disc, we were keen to validate the
existence of each of the above components on the videotapes. We asked 24 teacher
educators, many of who supervise student teachers regularly, to watch the tapes. Half
were asked to write an unstructured critique, using any format they wished on a blank
sheet of paper. The other observers recorded their critiques on a structured instrument
which was basically a sheet divided into six sections, one for each of the six components
above. These respondents were asked to rate the teaching for each component on a
linear scale, then to write an unstructured comment on that component. In effect this
forced their comments into the six components.

Through this exercise, we sought to determine whether the reports of the
observable features of the videos were consistent with our impressions of the
components of teaching presented; whether the six components are useful as a way of
organising critiques of a lesson; and whether structured or open format is more
informative for presenting critiques. The qualitative analysis program NUDIST (Richards &
Richards, 1990) was used in the analysis of the written critiques.

With regard to communication, there were surprisingly diverse and contradictory
results (see Mous ley, Sullivan, & Gervasoni, 1994). For instance, in a particular lesson
the teacher did not seek to distribute questions and other interactions evenly, but rather
allowed students the freedom to contribute publicly as they wished. There was a distinct
division in the way that people commented on teacher-to-student communication. Some
suggested that the teacher had focused only on some pupils and could be more
inclusive by questioning all students. On the other hand, others commented on her
nurturing manner of allowing students to join the dialogue when they felt they had
something positive to contribute. Comments included the following:

Mainly Emily, etc. were nurtured, but most others were left out of the class, so the problems

of understanding by the majority of the class were not addressed. The range of abilities was not

catered for all.

I was also pleased you encouraged all children to participate.

By the half way mark of the class seven children had been asked questions or had asked,

questions. Note how a few students seem to dominate. Do not rely on volunteers only.... Be

aware of who is being involved and who is passive.

The teacher directed teaming sufficiently but enabled children to contribute voluntarily

according to their potential.

The teacher restricted communication etc. with her star pupils only, so what learning was

achieved by the rest of the class is unknown. Only a handful of children talking ... M., L., E. and

0., were about the only children really engaged.
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Natural Communication
In non-institutional social situations, the frequency of people's contributions to

discussions and their total time allocation are not controlled. We rarely feel worried
about imbalances or attempt to redress unequal participation in everyday conversations.
People place themselves within conversations according to a number of factors, such as
their confidence in the situation, their knowledge of the subject matter, the contributions
they wish to make (or to reserve), and the roles that they wish to play within the group. It

is generally accepted that people can be fully involved and play an integral role in
discussions by just listening. However, mathematics lessons are not natural social
situations. Traditional patterns of control of communication have developed in schools
just as they have in other social institutions.

Dominant models of classroom interaction have been brought into question with the
recognition that discursive practices, in establishing both the terms of the pedagogy and
the parameters of classrqom action, produce what it means to be a subject, or to be
subjected, within these practices (Walkerdine, 1989). Thus questions of whether
communication should be controlled in traditional ways, or whether more natural
patterns should be encouraged are raised (see, for instance, Lemke, 1990).

Clearly, there would be competing perspectives in such matters. Making sure that
all children contribute would have some potential advantages, such as teaching all
children the social skill of working together to solve problems and share mathematical
understandings. Teachers can also judge students' understanding by their responses
and hence adapt further teaching. As articulation of ideas helps to clarify them,
expecting students to contribute to a discussion may also lead to improved learning.
Encouragement to contribute may also result in a growth of confidence after successful
attempts are made, leading to more willingness to contribute in future. Thus if teachers
do not require oral participation, they could perhaps be thought to be denying some
students potential opportunities for cognitive and social growth. Tobin (1984), suggests
that teachers also use particular target students to direct the lesson flow.

However, the notions that there are only some acceptable indicators of participation
and that teachers should control discourse arise from a didactic model of education
where teachers set learning objectives in terms of measurable forms of predictable
performance and then structure, control and evaluate classroom activity in terms of
these objectives. Some other models of education that are beginning to impact on
mathematics pedagogy position teachers not at the centre of activity, but as facilitators of
a variety of learning processes. Thus teachers do not dominate class and small-group
discussions and the above functions of communication become the responsibility of all
participants in classroom discourses (including the teacher). Using more natural
patterns of interaction, students communicate with each other without regular deference
to the teacher. Both teachers and students invite others to participate, but do not control
participation. Thus students are not put on the spot through discursive imposition, are
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not positioned as "class" rather than "individual", and can take a more equal role in using
language to establishing and maintain the aims of the social group.

While such models of education do not deny that curriculum content reaches
students through the agency of teachers, they do require flexible patterns of
communication within a context of new social relationships and practices in classrooms.
Exploring the issue of oral participation within competing views of education
demonstrated in the videotaped lessons has thus become a focus of our attention. This is
not just a matter of counting numbers of interactions, examining ways that quieter
students (or girls or members of minority groups) are encouraged to communicate more,
or interviewing teachers about their theoretical stances. It requires probing examination
of how and why learning processes are limited in particular ways. As Walkerdine (1985)
notes,

... the issue of silence and speaking is not a simple matter of presence or absence, or of
suppression versus enabling ... what is important is not simply whether one is or is not allowed to

speak, since speaking is about saying something. In this sense, what can be spoken, how, and

in what circumstances is important. It tells us not only about its obverse, what is left out, but also

directs attention to how particular forms of language, supporting particular notions of truth, come

to be produced. This provides a framework for examining how speaking and silence and the

production of language itself become objects of regulation. (p. 205)

Thus the questions that are being raised are about how linguistic patterns in different
classrooms (or with different activities) shape, constrain, or facilitate social relations
between teachers with students, for students with each other, and of students with
curriculum content and tools. They are also about which parties are talking (and when)
for what purposes, and who is designing communication channels (and how, as well as
with what effects). They are also about substantive messages about learning (as
opposed to schooling) and about the nature of "doing mathematics" that are imparted
during classroom discourses.

The lessons filmed do not demonstrate dichotomous pictures of individual teachers
consistently controlling discussions in some classrooms compared with students free to
participate as they see fit in other classrooms. These stances appear as points on a
continuum with the teachers identifying speakers at times for specific purposes, then
moving to positions of little control once those purposes are achieved, usually by
creating windows for classroom participation in such a way that any student can refuse to
take part in a discussion. At times, teachers control activity but not discourse, using
invitations such as "Now let us hear a solution method from someone who hasn't already
talked", or strategies such as students being asked to develop individual ideas then to
share these in pairs before an open class conversation is held. Talk in these situations
is not restrictively linear, does not put students into situations that they find threatening,
and is not teacher-controlled in a limiting sense.
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Conclusion
Weedon (1987, P. 108) claims that discourses are more than ways of thinking and

producing meaning, in that the ways in which discourse constitutes the minds and
bodies of individuals is always part of a wider network of power relations, often with
institutional bases. Our research is continuing, with a focus on power relations which
both shape and are 'shaped by the discursive fields of institutionalised education.
Problematic aspects are being raised for discussion at conferences (e.g. Sullivan &
Mous ley, 1994), and teachers who participated in the filming are contributing to this
dialogue (e.g. Mous ley, Sullivan, & Gervasoni, 1994). With further reading, and with
analysis of different media available for the examination of the classroom interaction,
how various aspects of the communication position students is being examined.
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MATHEMATICAL DISCOURSE: INSIGHTS INTO CHILDREN'S USE OF
LANGUAGE IN ALGEBRA

H. Sakonidie and Joan Bliss**

*Democritus University of Thrace, ** King's College London, University of London

ABSTRACT: The language used in the context of school mathematics has a number of special features
and pupils have to come to terms with these features in order to gain access to the mathematical
knowledge. This paper looks at the way children use the language in the context of three algebraic tasks
and adopts the concepts of "register" and "cohesion" from Halliday's socio-semantic approach to
analyse the language of their answers. The results show that to create written expressions to discuss
abstract algebraic entities and relationships is not an easy task for the pupils.

HALLIDAY'S SOCIOLINGUSTIC APPROACH TO DISCOURSE
In order to learn, children must use what they already know so as to give meaning to what the teacher

presents to them. Language helps to make available to reflection the processes by which they relate
new knowledge to old. But this possibility depends also on the social relationships, the

communication system between teacher and pupils, that is, the classroom discourse. Thus, the study
of the classroom discourse is the study of language used in a specific social setting.

To understand the meaning of the social dimension of language, one has to think of language as the

means of interacting with other people and constructing shared meanings, i.e. language as a means of
communication. Human communication is not only a matter of generating sentences (linguistic
competence) in the abstract, but also of being able to use and understand language in particular contexts

(communicative competence). Halliday (1973) argues that language is a "meaning potential", a set of

options in meanings. His theory makes two basic assumptions (Halliday, 1978):

(a) the linguistic system consists of three strata: semantic (meaning), grammar (the lexicogrammatical

sytem, or wordings) and phonological (the sound);

(b) the semantic system involves three functional components: ideational ( expresses the speaker's

experience of the internal and external world), interpersonal (expresses social and personal
relationships) and textual (makes the language "operationally relevant" in a context).

The textual component is of great interest because it is this component which defines the text-forming

resources of the linguistic system. Halliday sees text as any written or spoken passage which forms a

unified whole. Text is a semantic concept, it can be considered as a 'kind of super-sentence, something

that is larger than a sentence but of the same nature' (1978, p.135). Sentences are in fact realisations of

text rather than constituting the text itself. This attributes to the text an important role in gaining insight

into the language used and thus the meanings exchanged in various social or other contexts. In

particular, Halliday believes that there is a special value in analysing children's texts because young

children tend to display their environmental links more directly, using less metaphorical mediation.
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"Cohesion" is an important concept when considering text. Halliday notes that cohesion is the set

of possibilities that exist within the language for making text hang together the potential that the speaker

or writer has at his disposal. Cohesion can be expressed either through grantimar (grammatical

cohesion) or through the vocabulary (lexical cohesion). So, for example, the phenomena of
substitution, ellipsis and conjunction are grammatical types of cohesion, whereas those of synonym,

collocation and others are lexical types of cohesion.

Halliday examines contexts of situations in which language is used and the ways in which one type

of situation may differ from another. He uses the notion of "register" to show how linguistic situations

differ from one another. Three variables need to be considered always, what is actually taking place

(field) , who is taking part (tenor) , and what part language is playing (mode). Together these three

variables provide the "register", since they determine the range within which meanings are selected and

the forms which are used for their expression. The concept of register is a powerful one because it

shows that the language we speak or write varies according to the type of situation. Halliday shows

how situations determine language:

Situational elements determining Semantic components
Field (type of social action) experiential, or ideational

tenor (role relationship) interpersonal

mode (symbolic organisation) textual

From the above discussion, it is clear that Halliday's theory offers a way of looking at pupils'
written answers from a socio-semantic perspective i.e., in a functional way which considers the use of

language as a choice of meanings, as an activity which has links with features of the situation in which

it is used.

MATHEMATICAL DISCOURSE AND THE LANGUAGE OF THE SUBJECT:
THE RELEVANT RESEARCH
Children in school need to learn how to use language in the context of the various subjects, in order to

be able to cope with the demands of the curriculum. In the context of mathematics, this means that they

need to learn how to use language in order to create, control and express their own mathematical

meanings, but also to make sense of the mathematics of the others. It has been often suggested that the

failure of so many children in mathematics is closely related to their limited access to the language of the

subject.

In an earlier paper (Sakonidis and Bliss, 1991), we argued that this limited access is due to the fact

that, although the language is used in the subject context, it shares with the rest of the English language

the same basic grammatical and phonological elements, this is not the case for the semantic aspects.

There are meanings special to mathematics that are not met in the everyday context and with which the

learner has to come to terms. We believe that the term "mathematical register" in Halliday's (1978)

sense, i.e. the set of meanings that belong to the natural language used in mathematics and that a
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language must express if it is used for mathematical purposes, signals successfully the language
differences that are subject specific.

Research so far has mainly considered the lexical rather than the semantic or the syntactic
components of the 'mathematical register. Three types of words used in the context of the school
mathematics language have been identified: technical words (Twords), words common to mathematics

and the everyday language (CEM); and ordinary words used in the context of mathematics but not
carrying a mathematical meaning (NCEM). The relevant research (for example, Dickson, Brown and

Gibson, [1984], Shuard and Rothery, [1984], Pimm, [1987]) indicates that Twords and CEM words
present particular difficulty for pupils, but for different reasons. The former have a high level of
technicality and the latter an everyday meaning which is often confused with that of the mathematical

one NCEM words can also be problematic because they often carry subtle, highly advanced and
abstract ideas (for example, Reed [1984], Spanos [1988], Pimm [1984]).

From the above considerations, it becomes apparent that a study which examines children's language

in the context of a mathematics topic could provide some useful insights into the way in which language

functions in the context of that topic.

THE STUDY
The study which is presented here is part of a bigger piece of research which looks at pupils' ideas
about algebra through their written language. The choice of the written language was made on the

basis that it increases the possibility of a more thoughtful answer, whereas the choice of algebra was

based on the assumption that there are very few means - other than linguistic ones - of expressing the

abstract algebraic ideas. 394 pupils between the ages of 13 and 16 participated in the study: 155 year 9

(90 boys and 65 girls), 153 year 10 (73 boys and 80 girls) and 86 year 11 (44 boys and 42 girls). The

subjects were taken from four urban schools: one boys, two girls and one mixed and they all had at

least one year of formal teaching of algebra. The schools were banded for mathematics and a top and a

middle group were taken from each school in years 9 and 10 and a top group only in year 11.

In order to examine the language of pupils, we decided to use Halliday's concepts of "register" and

"cohesion", but not in quite the same complete way as Halliday. With "register", the concept of "mode"

does not enter into this analysis since the responses are determined by a methodology that uses a written

questionnaire. We use that aspect of "field" which is to do with the content of the lexical component,

and those aspects of "tenor" which are to do with personal relationships, and with personal stance.

Lastly we make use of part of the concept of "cohesion" by examining the connectives used by pupils.

We now give more detail of those terms we are using.

Field: The category of "lexis" was formulated to describe word usage, that is:

(i) Technical (mathematical) words (Twords) : These are technical words, with a special mathematical

meaning, found primarily in the context of mathematics, e.g. "equation", "numerator", "fraction".

(ii) Words common to everyday language and mathematics, but with different meanings in the two

contexts (CEM lexis). These are words found both in everyday language and in a mathematical
discourse, but with a rather different meaning in each, e.g."substitute" (as in an algebraic expression),
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"re-arrange" (the formula), "simplify" (the algebraic expression). It is important to notice that most of

these words do not have mathematical meanings in themselves, i.e. they are mathematically meaningless

when isolated from the expression within which they are embedded.

Tenor: The following aspects of tenor were used:

(i) Personal relationships : The use of the personal and impersonal references. This category describes

how the respondents define roles in the mathematical discourse, that is, whether they engage themselves

or other human beings in the response (personal reference) or they attribute to the mathematical entities

the main role (impersonal reference). Thus, the personal reference concerns the use of the pronouns

"I", "we", "you", "us", whereas the impersonal reference concerns the use of the pronouns "it" and

"they" (in a non human sense) and also the demonstratives "this" and "that".

(ii) Personal stance: The use of modal typesIverbs . Here the category provides either the degree of

certainty or uncertainty the pupil has about the ideas s/he is using, or the expression of the existence of

altematives/possibilities. The degree of certainty is expressed through the use of modal verbs such as

"could", "might", "may" and so on.

Cohesion: There are three main kinds of conjunctive expressions examined in relation to this concept:

additive ("and", "or", "also"), adversitive ("but", "yet", "although", "nevertheless"), causal
("because", "so", "therefore").

QUESTIONS GIVEN TO PUPILS
We now look at three of the five questions given to the 13-16 year old pupils in the form of a written

questionnaire. We have chosen to analyse for this paper the three following questions since they
generated more written text than the other two.

Question one: This question focuses on the area of a rectangle, and presents to the pupils the
formula in three different forms: (i) area=width x length (mixture of words and symbols); (ii) A= a x b

(symbols); and (iii) a x b (incomplete). Children are asked to choose, in part 1, the most helpful

expression and, in part 2, the least helpful, each time giving reasons for their choice.

Question two: Pupils are given a problem where the relationship between two variables (C and p) is

expressed through the formula C= p+2. They are presented with an answer given by a fictitious child

and they are told that it is wrong. Pupils are asked to imagine that they are to help this pupil and to

write down how they would explain what is wrong with the answer.

Question three: This question has two parts. In each part, pupils are given one linguistic
expression used in an algebraic context and are asked to give "another set of instructions", which

explains more clearly what the given expression entails. The two instructions are: Part 1 "remove the

brackets" from the expression 3(x+1)-2x; Part 2 "substitute" s=2 and t=3 in the formula F=st.

In table 1 we give the percentages for the types of words used, Twords and CEM, by pupils in all

three years for the above three questions. In Table 2 we give the percentages for the use of
personal/impersonal pronouns and modal words (would, could) by pupils in all three years for the

above three questions. We have not given a table for cohesion because the categories were not mutually

exclusive and so discuss this for each question.
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Table 1: Lexis/field within Register
Twords CEM

Y9 Y10 Yll Y9 Y10 Yll
Question 1 % % % % % %

Part 1 35 43 42 33 43 40

Part 2 31 33 28 38 45 47

Question 2 76 90 79 45 50 57

Question 3

Part 1 77 90 66 28 61' 38

Part 2 50 71 44 36 82 42

Table 2: Tenor within Register
Personal relation* Personal stance

Y9 Y10 Yll Y9 Y10 Yll
Question 1 % % % % % %

Part 1 41/55 37/63 29/57 5 12 5

Part 2 51/40 51/45 37/52 18 28 26

Question 2 14/64 13/67 20/72 41 40 44

Question 3

Part 1 11/1. 21/3. 8/12. 4% over 3 yrs

Pitrt 2 10/2. 10/5. 12/6. 6% over 3 yrs

First use of personal then impersonal pronouns.

We shall now consider each of the three questions, in turn, in terms of the aspects of register
detailed in the above tables.

Question 1
Field: The use of technical words is not very high in either of the two parts, being a little more frequent

in part 1 than in part 2 for the older children. There are seven mathematical words used over the three

years: "formula", "length", "width", "multiply", "rectangle", "equation", "number". Turning to CEM

words, in part 1, the use is similar to that of TWords. In part 2, CEM words are used a little more
frequently than TWords. There are four CEM words used across the three years, with relatively high

and similar frequencies from year to year: "letter", "area", "stand for", "equal". Among them, two are

algebraic CEM words (letter, stand for).

Tenor: The use of the impersonal reference in part 1 is higher than that of the personal reference

across all years. In part 2, younger pupils (13/14 years), however, use personal reference more
frequently than the older ones, this trend switching in year 10, with a greater use of the impersonal.

The use of modal words is very infrequent in part 1 and a little more frequent in part 2, particularly with

the older pupils.
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Cohesion: Additive and adversitive connectives were used infrequently by all pupils. However,
causal connectives, "because", "so", "therefore", were used in a very similar way and very frequently
by year 9 and 10 pupils, for example for year 9 pupils , part 1: 54% and part 2: 64%. Year 11 pupils'

use of connectives however falls because they seem to list criteria for choice rather than reasons for
choice.

Examples of the aspects of register and cohesion in children's writing are as follows (we italicise the

different aspects) :

"The most helpful answer is Jim's (area=width x length) because it isn't using letters which I
sometimes get confused with. It simply gives us what to find, WIDTH, LENGTH (capitals in the
response) without the use of A, B, A and the rest" (year 10).

"The most helpful answer is Jim's because the relationship is explained concisely due to the fact that
each variable is named in the equation" (year 11).

Summarising for question one, the use of Twords does not exceed about 43% and CEM words are

used as much as, if not a little more, than Twords. The use of reference is high, with the personal
reference appearing less often over the years. There are very few pupils who use modal words,
whereas the use of connectives is fairly high, particularly in the early years.

Question Two
Field: For all pupils, the use of technical words is very frequent, as high as 90% for year 10 pupils.
Six Twords occur in all three years: "number", "add", "formula", "equation", "sum", "negative".
Among them, the word "number " and then the words "add" and "formula" are fairly frequently used in
all years. There are a number of additional Twords, e.g. "positive", "variable", appearing over the

years, but very infrequently (maximum 3%). The use of words CEM is less frequent than Twords,
increasing a little with age. There are five CEM words occurring across the years, namely "equal",

"represent", "letter", "value", "stand for", only one of which is frequently used in all three years, that

is, "equal" (about 33%). A considerable range of other CEM words occur in each year, but very
infrequently (maximum 2%).

Tenor: On the whole, impersonal reference is used frequently increasing to 72% with year 11 pupils.

Personal reference is used infrequently (maximum by year 11 pupils of 20%). The use of modal verbs

is fairly high, its frequency being similar over the years (maximum 44%).

Cohesion: There is a use of all connectives, with causal words being the most frequent connectives
(90% for year 10 pupils). Adversitive words are the next most frequently used type of connective
words but never exceeding 28% and this for year 9 pupils.

Some examples of the pupils' responses are:

"Your way is wrong because you could have p+2=C and C would be the same value. The way I
would do it is that C is a bigger number because if you had p-C the values would be the same but if
you have p+2=C you know that p needs another value to equal C" (year 9)
"The explanation is wrong because just because the 'C' is on the left of the formula' doesn't mean
that's the bigger, it is C because its (it's) a total of an addition 'p+2', so the total has to be bigger than
an individual letter" (year 10).
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In summary, Twords are very frequent, whereas CEM words are frequently used but not as
frequently as Twords. For both types of words, there is very little change over the years. The use of

the impersonal reference is very frequent, unlike that of the personal pronoun where use is low.
Finally, about 40% of the pupils use modal words, and up to 90% of them use causal connectives.

Question 3
Field: On the whole, the use of technical words has a fairly wide range (between 44% and 90%),

being a little higher in part 1 (from 66% to 90%) than in part 2 (from 44 to 71%). There are five
Twords used across the years in both parts : "multiply", "sum", "number", "formula", "equation". The

words "multiply" and "sum" in part 1, and the words "number" and "formula" in part 2 are the most

frequently used words. The use of CEM words is overall lower than the use of technical words in both

parts , with the exception of year 10 pupils in both parts.

Tenor: In both parts, the use of either of the two references, that is, personal or impersonal, is very
infrequent.

Cohesion: Overall, causal words, such as "because", "so", etc., are the only type of connectives used

at all frequently (average about 20% in both parts).

Examples of answers to this question are:

"Brackets are often put in to help you in equations and not get you mixed up. So when you take the

brackets away you usually have simplified the equation by using the large number outside, on the

left. So you end up with a more easier task" (year 10, part 1).

"Substitute can be taken to mean exchange the numbers given for the letters in the equation. Take

the letters out of the equation and put the numbers in" (year 11, part 2).

Summarising, on the whole, technical words appear more frequently than CEM words for years 9

and 11, but year 10 both types of word are used very frequently and similarly in both parts. The use of

reference is very low, and the use of causal connectives is also fairly low.

DISCUSSION AND CONCLUSIONS
The written responses of the pupils to the three questions require, among other things, the ability to co-

ordinate ideas and accommodate other points of view, components which entail considerable
complexity. In addition, two other features need to be considered: the abstraction of the.algebraic
ideas and the fact that writing itself is not usually included among mathematical and, in particular,
algebraic activities in school. It may thus be expected that written accounts could prove to be
demanding tasks to perform.

On the whole, although the use of technical vocabulary is considerable in questions 2 and 3, its
content is very restricted and similar across the years. This suggests that independent of age and

algebraic experience, pupils use only a limited number of technical words in their responses. The use

of CEM words is less than that of technical words. Older pupils, particularly year 10, use them
slightly more frequently than younger ones. Overall, there seems to be an important common core of

technical and CEM vocabulary used in all years. These two vocabularies are as follows:

Technical core vocabulary: "formula", "number", "add", "multiply", "sum", "length", "width".
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CEM core vocabulary: "equal", "letter", "stand for", "represent", "value", "area", "expression", "replace".

The above seems to indicate that pupils have a facility with technical words which refer to operations

but not to variables. When using the CEM words, there are one or two words that hint at the notion of

variable. This possibly shows that pupils are attempting to understand it but do not yet have either a

complete grasp of it or the appropriate means to express it.

The frequent use of impersonal reference (question 1 and particularly 2) could be mainly as a
consequence of attempting to avoid using an algebraic term, consciously or unconsciously. Thus

instead of saying "the variable should", they argue "it should", that is, in an anaphoric manner. The

use of the personal pronoun is, on the whole, very low, except when the task is of a pragmatic nature;

that is, the child is asked to judge certain ideas, without having to explain or instruct but rather needs to

express his/her own opinion (question 1).

Modal words are infrequent and occur most often when the main concern of the response (and the

task) is the idea of variable and the values for which it stands. This could be explained by a tendency

of the pupils to again avoid dealing with the generality and abstraction of the algebraic ideas, either

because they do not grasp them or because they cannot express them.

It appears that not only the nature of the tasks but also the writing task set by the different questions

affect the way in which pupils use connectives. When the question and the writing task provide

sufficient structures to indicate a need for the use of these words, then it becomes clear that they are

present in the children's vocabulary and can be used well (questions 1 and 2). It is possible that to

write spontaneously about algebra without some indication or hint of a definite structure might be to

make a big cognitive demand on the pupils.

Aspects of Halliday's concepts of "register" and "cohesion" help us unravel some of the intricacies

of the pupils' written texts, highlighting what for them is important in the mathematical discourse, the

picture for the teacher possibly being quite different Thus while for the adult the useof the impersonal

pronoun could be seen as a sophistication, for the pupils such a use might be a helpful means of
avoidance of difficulties.
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Abstract

Recent research has convincingly documented elementary school children's tendency to
neglect commonsense knowledge and realistic considerations during mathematical
modeling of word problems in school arithmetic. The present paper describes the design
and the results of an exploratory teaching experiment in which a group of 11-12-year olds
followed a course wherein word problems are conceived as exercises in mathematical
modeling, focussing on the assumptions and appropriateness of the model underlying any
proposed solution.

Theoretical background and research questions

Arithmetic word problems constitute an important part of the mathematics program at the

elementary school. The most important reason for using this type of problem in schools is

to train pupils in applying their formal mathematical knowledge and skills in real-

worldlike situations. However, for several years it has been argued that the practice of

word problems in school mathematics does not develop in pupils a tendency to include

commonsense knowledge and realistic considerations in their solution processes. Rather

than functioning as realistic contexts that elicit in pupils the use of their Icnowlvige and

experience about the real world, school arithmetic word problems have become artificial,

puzzle-like tasks that are perceived as being separate from reality (Nesher, 1980).

Recent studies by Greer (1993) and by Verschaffel, De Corte and Lasure (1994)

have yielded strong empirical evidence for this argument. In these studies large groups of

pupils (11-13-years olds) were confronted with a set of word problems, half of which

were standard items (S-items) that can be solved unambiguously by applying the most

obvious arithmetic operation(s) with the given numbers (e.g., "Steve has bought 4 strings

of 2 meters each. How many strings of 1 meter can he cut out of these strings?"), while

the other half were problematic items (P-items) for which the appropriate mathematical

model is less obvious and indisputable, at least if one seriously takes into account the
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realities of the context evoked by the problem statement (e.g., "Steve has bought 4 planks

of 2.5 meters each. How many planks of 1 meter can he saw out of these planks?"). An

analysis of the pupils' reactions to the P-items yielded an alarmingly small number of

realistic responses or comments based on realistic considerations (e.g., responding the

above-mentioned P-item with "8 planks" instead of "10 planks", because in real life one

can only saw 2 planks of 1 meter out of a plank of 2.5 meter).

These well-documented undesirable learning outcomes are generally attributed to

the following major characteristics of the current instructional practice: (1) the impoveris-

hed and stereotyped diet of standard word problems which can always be unambiguously

modeled and solved through the most obvious arithmetic operation(s) with the numbers

given in the problem, and (2) the fact that instruction is focused at teaching pupils to

solve these problems by identifying and execute the correct arithmetic operation, rather

than taking a different perspective whereby word problems are conceived as exercises in

realistic modeling, focussing on the proper consideration of the assumptions and the

appropriateness of the model underlying any proposed solution (Greer, 1993; Verschaffel

et al., 1994). However, so far there is hardly any empirical evidence supporting these

claims. In the present study an attempt is made to verify the hypothesis that through

appropriate instruction one can develop in primary school children a disposition toward

realistic modeling of word problems.

Research design and data analysis

Three classes from the same school participated in the experiment: one experimental (E)

class of 19 fifth-grade children, and two control classes (C1 and C2) of 18 and 17 sixth-

grade children, respectively.

The pupils from the E-class participated in an experimental program on realistic

modeling (during the hours allocated for mathematics). The program consisted of five

learning units of about 2 1/2 hours each, spread over a period of about 2 1/2 weeks.

While the teacher was intensively involved in the preparation of the experimental program

and the tests, the actual teaching was done by the first author. During the experiment, the

pupils from the two control classes followed the regular mathematics curriculum.

The three groups were given the same pretest, which consisted of 10 P-items and

five buffer items (S-items). The 10 P-items were grouped in five pairs: one item in each
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pair was similar to an item from one session of the experimental program both in terms

of the context evoked by the problem statement and in terms of the underlying

mathematical modeling difficulty (no-transfer item), while in the other problem the same

underlying mathematical modeling difficulty had to be handled in a different problem

context (= transfer item) (see Table I).

With respect to each problem, pupils were not only asked to write their answer,

but also to mention how they arrived at their answer and/or to write down possible diffi-

culties or worries experienced during the solution of the problem.

Table 1. The ten P-items from the pretest

1A* 1180 supporters must be bused to the the soccer stadium. Each bus can hold 48
supporters. How many buses are needed?

I B 228 tourists want to enjoy a panoramic view from the top of a high building. In
the building there is only one elevator. The maximum capacity of the elevator is
24 persons. How many times must the elevator ascend to get all tourists on the top
of the building?

2A At the end of the school year, 66 school children try to obtain their swimming
diploma. To get this diploma one has to succeed in two tests: swimming 100 meter
breaststroke in 2 minutes and treading water during one minute. 13 children do not
succeed in the first test and 11 fail on the second one. How many children get
their diploma?

2B Carl and Georges are classmates. Carl has 9 friends he wants to invite for his
birthday party, and Georges 12. Because Carl and Georges have the same birthd-
ay, they decide to give a joint party. They invite all their friends. All friends are
present. How many friends are there at the party?

3A Some time ago the school organized a farewell party for its principal. He was the
school's principal from January 1 1959 until December 31 1993. How many years
was he the principal of that school?

3B This year the annual rock festival Torhout/Werchter was held for the 15th time. In
what year was this festival held for the first time?

4A Sven's best time to swim 50 meters breaststroke is 54 seconds. How long will it
take him to swim 200 meters breaststroke?

4B This flask is being filled from a tap at a constant rate. If the depth of the water is
4 cm after 10 seconds, how deep will it be after 30 seconds? (This problem was
accompanied by a picture of a cone-shaped flask)
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5A A man wants to have a rope long enough to stretch between two poles 12 meters
apart, but he has only pieces of rope 1,5 meters long. How many of these pieces
would he need to tie together to stretch between the poles?

5B Steve has bought 4 planks of 2.5 meters each. How many planks of 1 meter can
he saw out of these planks?

The second problem of each pair is the transfer item.

At the end of the experimental course a parallel version of the pretest was admi-

nistered in all three classes as a posttest. However, in one of the control classes namely

Cl - this posttest was preceded by an introduction of 15 minutes in which the pupils'

attention was drawn to the fact that routine solutions for word problems are sometimes

inappropriate when considered in terms of realistic constraints; a few examples of such

inappropriate routine solutions were given, and pupils were warned that the test contained

several items for which such routine solutions are inappropriate.

One month after the posttest, the pupils from the E-group received a retention test

consisting again of 10 P-items and five buffer items (S-items) as part of a normal

mathematics lesson. Half of the P-items were parallel versions of the transfer items from

the posttest; the other half involved problem contexts and underlying mathematical

modeling difficulties that were even more remote from those encountered during the expe-

rimental program (e.g., "Bruce and Alice go to the same school. Bruce lives at a distance

of 17 kilometer from the school and Alice at 8 kilometers. How far do Bruce and Alice

live from each other?" and "What will be the temperature of water in a container if you

pour 1 liter of water at 80° and 1 liter of water at 40° into it?").

To evaluate the effects of the experimental program , an analysis of variance was

performed with group (E versus Cl versus C2), time (pretest versus posttest) and problem

type (no-transfer items versus transfer items) as the independent variables and the

proportion of "realistic reactions" (RR) on the P-items as the dependent variable. The

term RR refers to responses that result directly from the effective use of real-world know-

ledge about the context elicited by the problem statement (for example, the RR for the

"planks"-problem mentioned in the first section, is "8"). However, a pupil's reaction was

also considered as a RR, when a non-realistic answer was accompanied with a comment

or consideration about the problematic assumptions of the mathematical model underlying

the proposed routine solution (for example, when the "planks"-problem was answered

with "10", but followed by a comment such as "Steve will have a hard time putting toge-
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ther the remaining pieces of 0.5 meter"). Significant main and interaction effects were

further analyzed by means of Tukey's test.

Based on video-recordings of the lessons and pupil notes, detailed qualitative

analyses of the problem-solving and the discourse processes in the experimental class,

were also performed. Due to place restrictions, the findings of this analysis cannot be

reported here.

The experimental course

This section describes and illustrates the major characteristics of the experimental

program.

First, the impoverished diet of standard word problems offered in traditional

mathematics classrooms was replaced by more authentic problem situations especially

designed to stimulate pupils to pay attention at the complexities involved in realistic

mathematical modeling and at distinguishing between realistic and stereotyped solutions of

mathematical applications. Each learning unit focused on one prototypical problematic

topic of realistic modeling. The topic of the first unit was: making appropriate use of

real-world knowledge and realistic considerations when interpreting the outcome of a

division problem involving a remainder. The opening problem involved a story about a

regiment of 300 soldiers doing several typical military activities. Each part of that story

was accompanied with a question which always asked for the same arithmetic operation

(namely 300 : 8 = .) but required each time a different answer (respectively, "38", "37",

"37,5" and "37 remainder 4"). The theme of the second learning unit was the union or

separation of two sets with joint elements. The opening problem was about a boy who had

already a given number of comic strips of "Suske and Wiske" and gets a package of

second-hand albums of "Suske and Wiske" from his older cousins (who have lost their

interest in these comics). The pupils had to determine the number of missing albums of

"Suske and Wiske" in the boy's collection after getting this present (given the total

amount of albums in this series). The third unit focused on problem situations wherein it

is not immediately clear whether the result of adding or subtracting two given numbers

yields the appropriate answer or the answer + 1 or 1. In the opening problem, pupils

were given the number of the first and the last ticket sold at the cash desk of a swimming

pool on a particular day, and they had to decide how many tickets were sold that day.
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The fourth unit dealt with the principle of proportionality and, more particularly, how to

discriminate between cases where solutions based on direct proportional reasoning are or

are not appropriate. The starting problem was about a young athlete who's best time on

the 100 meters was given, and pupils were asked to predict the boy's best time on the 400

meters. The fifth and last learning unit started with a problem of a boy who wanted to

make a swing and who had to decide about the amount of rope needed for fastening the

swing at a branch of an big old tree at a height of 5 meter. In that session, pupils

experienced that in many application problems one has to take into account several

relevant elements that are not explicitly nor immediately "given" in the problem statement

but that belong to one's commonsense knowledge base.

Second, the teaching methods used in the experimental program differed

considerably from traditional mathematics classroom practice. Each session started with

an opening problem (see above) that was solved in mixed-ability groups of 3-4 pupils.

Within each group, the pupils had to solve the problem individually first (on a A4 sheet),

and to agree upon a common response afterwards (on one common A3 sheet). In addition,

the pupils were asked to answer a series of reflective questions such as "What difficulties

did you encounter when solving this problem?", "On what points did you disagree?" or

"What did you learn from solving this problem?". This group assignment was followed by

a whole-class discussion in which the answers, the problem-solving steps and the additio-

nal comments of the different groups were collected, compared and evaluated, thereby

focussing on the proper consideration of the assumptions and appropriateness of the

mathematical models underlying the distinct proposed solutions. Then each group was

given new worksheets containing a set of four problems, two with and two without the

same underlying modeling difficulty as the opening problem. This group assignment was

again followed by a whole-class discussion. Finally, each pupil was individually admi-

nistered either at a different time during school hours or as homework one problem

that involved once again the topical modeling difficulty, and the pupils' reactions to this

individual assignment were also listed and discussed afterwards during a whole-class

discussion.

The third major characteristic relates to a more subtle aspect of the experimental

teaching environment, namely the establishment of a new classroom culture in line with

the mathematical modeling perspective outlined above. This was attempted by the

following activities: demonstrating and explaining valuable problem-solving strategies to
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the whole class (such as making a drawing or a diagram of the problem situation;

thinking of a similar problem situation with easier numbers; applying informal, context-

dependent solution procedures, etc.); giving appropriate hints and feedback during the

group and individual assignments; spending a lot of time to listening to pupils' explana-

tions and justifications of their own solutions; explicitly negotiating new social norms

about what counts as a good problem, a good solution procedure, or a good response

(e.g., "adults sometimes count on their fingers too"); and, discussing the role of the tea-

cher and the students in a maths class (e.g., "Don't expect me to tell you what answer is

itlq correct one").

Results

The analysis of variance revealed a significant (p < .0001) "group X time" interaction

effect. During the pretest pupils from all three groups demonstrated a strong overall

tendency to exclude real-world knowledge and realistic considerations from their problem

solutions. The fifth graders from the E-class produced somewhat less RR on the 10 P-

items of the pretest than the sixth graders from the Cl- and the C2-classes - the percenta-

ges were 7 %, 20 % and 18 %, respectively -, but these differences were not significant.

However, there was a significant increase in the number of RR from pretest to posttest

for the E-group: from 7 % RR on the pretest to 51 % RR on the posttest. To the

contrary, in the two control classes the progress in the amount of RR from pretest to

posttest was non-significant, namely from 20 % to 34 % for Cl and from 18 % to 23 %

for C2. The relatively small and non-significant increase in the number of RR in the Cl-

class as compared to the E-class, indicates that merely telling and illustrating that routine

solutions for word problems are not always appropriate, is certainly not enough to trans-

form pupils from mindless and stereotyped task performers into critical and realistic pro-

blem solvers. Such a transformation requires intensive training.

Furthermore, the lack of a significant "group X time X problem type" interaction

indicates that the increase in the number of RR in the E-class from pretest to posttest,

cannot be considered as a task-specific training effect. Indeed, while the increase in the

percentage of RR in the E-group from pretest to posttest was larger for the five items that

were similar to those from the experimental course (from 9 % to 60 %) than for the five

transfer items (from 6 % to 41 %), the increase was significant (at the 5 % level) for
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both kinds of problem.

Additional evidence in favour of the experimental course is provided by the

positive results of the E-class on the retention test. The percentage of RR for the 10

problems of the retention test (i.e., 41 %) was exactly the same as on the five transfer

items from the immediate posttest. We remind that this retention test was administered as

part of a normal mathematics lesson, and that it contained not only parallel versions of

the transfer items from the immediate posttest, but also several P-items which were even

more dissimilar from the training items. Interestingly, these latter P-items from the

retention test elicited also percentages of RR that were much higher than those observed

in equivalent groups of pupils who solved the same P-problems without special training in

realistic mathematical modeling (Greer, 1993; Verschaffel et al., 1994)

Discussion

Although the positive results reported above are jeopardized by some methodological

weaknesses of the present study (such as the small size of the experimental and control

groups, the relatively short duration of the instructional treatment, and the absence of a

retention test in the two control classes), they nevertheless provide good and promising

support for the hypothesis that it is possible to develop in pupils a disposition towards

realistic mathematical modeling, by immersing them into a classroom culture whereby

word problems are conceived as exercises in realistic mathematical modeling focussing on

proper consideration of the assumptions and appropriateness of the model underlying any

proposed solution.
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Seven Dimensions of Learning - A Tool for the Analysis of
Mathematical Activity in the Classroom

Simon Goodchild

College of St. Mark and St. John, Plymouth U.K.

Seven aspects of students' learning experience are tentatively identified as sufficient
for providing a-coherent social constructivist account of goal directed activity. An
example is then given illustrating the application of these in the analysis of an
exploratory conversation with a student engaged in mathematical activity.

;.-

Unstructured conversations with students were held during their normal
mathematics lessons with the specific intention of exploring the goals towards which
they were working. These goals, defined at three 'levels', are recognised as rationale,
purpose and interpretation (Goodchild 1994b). Analysis of the conversations, using
Q.S.R. NUD.IST (1994) as a software tool for indexing, retrieving and structuring
revealed evidence that four further 'dimensions' should be considered if a complete
account of the students' goal directed learning activity was to be attempted. These
additional dimensions are awareness, conception, affect and content; students'
positions in each of these seven dimensions vary in dialectical relationship with each
other. The shift from 'level' to 'dimension' is not accidental as dimension does not
carry the same hierarchical meaning as level and the notion of hierarchy seems to be
inappropriate in the context of 'dialectical relationships'. The seven dimensions are
outlined below, together with a brief explanation which fixes them into the existing
framework of learning theory. The application of these dimensions in the analysis of
researcher - student conversations is then illustrated.

The epistemological basis of the research is that of social constructivism (Ernest
1991) and focuses upon students' goals in classroom activity and, it is hoped, will
provide an empirical basis for demonstrating the coherence and sufficiency of social
constructivism as a framework for explaining an important aspect of students' learning
activity. Lerman (1994) has argued that social constructivism attempts to paste
together inconsistent theories of constructivist and cultural psychologies and thus
creates an incoherent account of cognition. The seven dimensions outlined here
implicate both theoretical accounts and the coherence is established in the 'learning
subject' rather than a synthesis of ontological and epistemological theories.

The choice of the first three dimensions; rationale, purpose and interpretation;
were influenced by Lave's account of cognition in social practice (Lave 1988) and
activity theory (Leont'ev 1979, Mellin-Olsen 1987). The initial interpretation of data
was based on these but the need for further dimensjons began to emerge from the very
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early stages of the analysis (Goodchild 1993, 1994a,b). A brief explanation of the
dimensions is now given.

Rationale: Mellin -Olsen (1981) argues that successful learning requires students
to hold a rationale for learning and he indicates two are possible, an S- rationale where
students engage in learriing activity because the content of the activity is perceived as
being useful for its own sake; and an I- rationale where students engage in learning
activity because it will enable them to achieve some other possibly unrelated goal,
such as achieving success in examinations and thus gaining access to desired
employment. It is apparent that these two rationales do not account for all
observations of students engaging in classroom activity, some appear to work for no
other reason than this is what we do in mathematics lessons. I call this a P- rationale
('P' for Practice), strictly it is not a rationale for learning, it is a rationale for a particular
form of behaviour, in the sense that Bruner (1990) writes about behaving 'Post-Office'.

Purpose: As El'konin (1961) observed, there is a significant difference between
everyday activity and educational activity in that in the former the subject aims to
change the object of the activity whereas in the latter the subject aims to change
him/herself. It is clear that this distinction is not always obvious to students who
reveal that the purpose of their activity is the production of answers or solutions to
problems rather than learning.

Interpretation: Learning is seen to be about changes which take place within the
learner, and cognitively, those changes are due to the constructions of the learner,
possibly through processes of assimilation and accommodation as proposed by Piaget.
Constructivists agree that reflection is fundamental to the process of learning.
Learners need to reflect both on their own thinking and on the object of their thinking,
so to signal that reflection may be in both directions the word interpretation is
preferred. There is also the possibility that students may be so engrossed in the
production function that no reflection takes place at all and in this case the
interpretation is labelled 'blind' (Goodchild 1993) following the use of the word 'blind'
by Christiansen and Walther (1986) when they discuss this type of response to
classroom activity.

Awareness: Students do not approach any activity with completely open minds
and they will perceive the activity in the context of their own belief and value system,
relating this to the object of their study, and practices in teaching and learning. Partly
this includes metacognition (Schoenfeld 1987) and attempts to develop students'
metacognitive processes have been made with some success (Bell et al 1994). In the
present context awareness also includes students' beliefs about the nature of
mathematics (Goodchild 1994a) and what constitutes 'proper' behaviour (by teacher
and students) in the classroom.

Conception: Following the argument of Confrey (1991) the word misconception is
avoided because each student makes her/his own conception as seems right from their
own experiences of a particular concept. Their conception may fit with their
experience but not match with that conventionally held, thus a distinction is made
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between the conventional conception and the student's own conception if it is seen to
differ from convention. It is also necessary to distinguish between syntactic
conceptions where students are able to follow the form of a process without
establishing the meaning and semantic conceptions (Skemp 1982) where the object or
process is meaningful, here again both syntactic and semantic conceptions may match
or merely fit with convention.

Affect: much has been written about the power of affect in cognitive processes
(e.g. McLeod and Adams 1989). Every student approaches mathematical activity with
a previous history of success and failure, of pleasure and pain, of comfort and stress.
Thus the affective dimension is of significance. Affect here is used as an all embracing
term to include the whole range of attitudinal responses from cold to hot emotional
reactions.

Content: superficially this is defined by the scheme of work, the teacher and the
text book, in the event content is (continually being) redefined by the student through
dialectical relationships with the other dimensions.

Methodology
One year ten (14 to 15 years old) class of 'intermediate achievement' was selected on
the basis of practical considerations such as ease of access, familiarity with school, a
class teacher willing to tolerate the researcher's presence, and a working atmosphere in
the class which would facilitate the tape recording of conversations between
researcher and student. Except on a very small number of occasions no demands were
placed upon the teacher or deviations from the scheme of work were made to facilitate
the research, thus as far as possible the class maintained its normal routine and
conversations with students were held relating to their routine work. About 150
substantive conversations were held during the course of 85 lessons attended
throughout the school year, the majority of those lessons missed were at the beginning
of the year as the teacher established a working relationship with the class.

Of the various methodological problems with research of this nature perhaps the
most significant is that introduced because the researcher is the instrument of both data
collection and analysis. It is possible for the research to reveal no more than his own
belief system thus control over the collection and interpretation of data weakens any
claim of objectivity. One means of addressing this problem is to open up the ongoing
analysis and interpretation of data to scrutiny and criticism, this is one of the aims of
this report.

The conversation used below is chosen specifically because the 'seven dimensions'
are not immediately obvious and are clearly the result of interpretation.

Example
The conversation takes place during a lesson in which the class is revising for an end
of module test; the scheme of work is fragmented into modules of five or six weeks;
each module consisting of a variety of topics; a test assessing performance in these
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topics is set at the end of each module. Student SJ initiates the conversation by
claiming that she does not understand the first question on the revision sheet.

(numbers refer to 'text units' rather than lines).
1. I - ... you can read it to me for a start
2. SJ - A garden centre sells fertiliser, the cost being, what's that?
3. I- Come on you can read that
4. SJ - Proportional is that how you say it?
5. I - Yeah that's right
6. SJ - Is that how you say it?
7. I - You just said it
8. SJ - Proportion-al
9. I - Proportional
10. SJ - Oh yeah, proportional to the amount bought four kilograms of fertiliser cost seven pounds fifty what

is the cost of twenty kilograms?
11. I - And what don't you understand there?
12. SJ - How to work it out, like how did they get four grams cost seven pound fifty?
13. I Well didn't they look in the catalogue and say 'Oh, four kilograms cost seven pound fifty'
14. SJ - Forgot how you work it out
15. I Hmm?
16. SJ - Forgot how you work it out
17. I - But you haven't got to work out what four kilograms they're telling you that.
18. SJ - Yeah but how did they?
19. I - Well you
20. SJ Cause I got, how did they do that, so I can work out twenty?
21. I Um, if you go to a shop, how do you know how much things cost?
22. SJ - Doesn't say
23. I Do you ask the person behind the counter, "How did you work out the cost of that?'
24. SJ - Oh no, he just says it
25. I Just says it. So, in this garden centre it just says
26. SJ Four grams
27. I - Four kilograms costs seven pound fifty
28. SJ - So how do I work out twenty then? Do I do twenty times four?
29. I Not quite
30. SJ - Share by?
31. I - Why would you do share by?
32. SJ - Cause, urn, cause I need to know, cause I need twenty (I - Yes) kilograms instead of four, so if I

share it, I work out instead of doing one, no instead of working out the four (I - Yes) I work out twenty (I -
Yes) and then that'll be the answer

33. I - Can you think of another way of asking that same question?
34. SJ Er, no
35. I Look suppose you have worked out that for your garden you need twenty kilograms, (S..1- Hmm) you

go to the garden centre and you find they sell bags, and each bag holds four kilograms, how many bags
are you going to have to buy to get as much as you want?

36. SJ - Four
37. I - How do you work out four?
38. SJ - Timesed by itself
39. I - Why did you times it by itself?
40. SJ - Don't know, don't know how to work it out
41. I - Right, think you do .. you just need to be thinking a bit about it. You need to buy twenty kilograms,

you need to buy twenty, but you look on the shelves and they've just got the bags and they hold four
kilograms in each bag, (SJ - Yeah) how many bags are you going to have to buy?

42. SJ - Five
43. I - Why five?
44. Si- Five, five fours are twenty
45. I - Five fours are twenty. Right, how did you work out that that was what you'd got to do?
46. SJ - Cause I divided twenty by four
47. I - You divided the twenty by tour. Does that make sense?
48. SJ - Yeah
49. I - So if you've got to buy five bags, how much is it going to cost you?
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50. SJ Five times seven pound fifty
51. I - Right, which is?
52. SJ - [Uses calculator] Thirty seven pounds fifty

Asked to read the question aloud it is clear that she has a problem with the word
'proportional' but this is quickly overcome and she is stuck again as she believes she
lacks some information or skill, she does not know how the price £7.50 for four
kilograms is worked out. In trying to enable her to solve the problem it is recast into a
more detailed narrative and broken down into two steps, 'how many bags are you
going to have to buy?' And 'how much is it going to cost you?' To these questions SJ
is able to give correct answers which she is able to explain meaningfully. SJ claims
that this makes sense to her and her answers seem to bear this out. The conversation
moves on to consider her feelings about the problem and its relevance to her everyday
life.

Content: Superficially the content of the task is proportionality but this concept
becomes obscured in the problem solving process. The problem is set in a real world
context, its solution requires a knowledge of when division and multiplication are
appropriate operations, as a calculator is available skill in these operations is not
required nor any knowledge of number bonds. Proportionality was studied towards
the beginning of the module, four to five weeks previously, four lessons being spent on
the topic (there are three lessons per week), SJ had been present at all of these lessons.
Although ostensibly set in the real world SJ's conception of the problem appears to
situate it elsewhere.

Conception: Si appears to situate the problem as a classroom task rather than in
the given real world context. Evidence for this is apparent, firstly, [text units 1-10]
where SJ has difficulty with the word proportional, this takes the problem out of her
everyday experience. Secondly, Si looks for the way to do it [text unit 12] 'how did
they (get) four grams (sic) cost seven pound fifty?' [Text unit 20] 'how did they do
that, so I can work out twenty?' And [text unit 62] 'I don't know where they've got
seven fifty for four grams'. Compare these statements with her solution when the
problem is rephrased [text units 35 and 41] and SJ is able to construct a solution which
appears to be meaningful to her, based upon conceptions which appear to match those
conventionally held [text units 42 52]. In both cases it is argued that the conceptions
are situated in a context: Si's conception - as a classroom problem; and its redefinition
- as a real world problem, the change in context enables Si to reach a solution. Further
we note that in both cases SJ's conception is semantic in that she is relating to the
meaning of the problem rather than a syntactic process of calculations: this is not to
say however that she would not have been content with a syntactic solution if this had
been made available to her.

It may be claimed that the support given to her [text units 17 - 41] changes the
nature of the content and this is possible but in changing the nature of the content there
is a response/reaction in the conception which SJ makes and that is part of the point
being made here.
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Awareness: SJ reveals differing states of awareness during the conversation. In
the first instance her awareness is of not being able to do the problem, this is what she
'feels' arising from her conception. This uncertainty is revealed when asked 'what don't
you understand here?' She responds 'how to work it out,' and later she asks 'so how do
I work out twenty then?' [text units 11 and 12, 28]. She is also aware that there must
be some mathematical process - knowledge of which she does not possess, [text units
16 - 20]. Later as the problem is restated her awareness changes to that of
understanding [text units 53 - 58 and 65 68]. When questioned she also reveals her
awareness of the value of the activity - none or very little [text units 77 116].

Awareness is important because she starts off aware that her knowledge is
incomplete in the respect of this problem, without this she may not set herself a goal to
learn. However she is aware that there is little value in this type of activity anyway so
she is unlikely to set herself a learning goal in any case. Further, implicit in the
conversation is her awareness of the nature of mathematics, that it is in some way
'special,' that there are special techniques and skills which must be applied to
problems in the classroom and she does not possess all those necessary in this case.
The language of the problem and her physical presence in a mathematics class seems
to mystify the problem for her.

53. I Thirty seven pounds fifty? Does that make sense?
54. S..1- Yeah, [text units 55, 56 omitted]
57. I - Do you think question one is a difficult question?
58. SJ - No, not really
59. I OK, what was causing you the problem at the beginning?
60. SJ - 'Cause four's far away from twenty that's why I didn't understand it really
61. I - I haven't really understood what you're saying to me
62. SJ 'Cause seven fifty's are four (I - Yeah) and I didn't know how to work twenty out, because, I don't

know where they've got seven fifty for four grams
63. I - Right. So, if someone was, if you were to come along and and, help someone with that question,

what would you say to them so that they could understand what the question was about?
64. Si- Er, the same way you explain it, saying that I just don't know. How many twenties in four and then

saying then you've got to times the answer by that there and that gives you the answer
65. I But suppose I say to you now, well how do they work out four kilograms cost seven pounds fifty?
66. SJ - Is it four times something is seven fifty so to work out that they do seven fifty divided by tour and

you get the answer for working that one there out
67. I And that will be what one is?
68. SJ - Yeah
69. I - Yeah OK. But is that important to know that?
70. SJ - No
71. I - What is important in this question?
72. SJ - Four
73. I - And what else?
74. SJ - Seven fifty
75. I -. Yeah, anything else that's important in the question?
76. SJ - Urn,
77. I - Do you think it's important to know this type of work?
78. Si -
79. I - You don't
80. SJ - No
81. I - You can't think of where you might use it
82. SJ -No
[text units 83 to 119 have been omitted due to limitation of space]
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Interpretation: SJ's awareness and conception indicates that she has engaged in
some reflective activity but her reflection appears to cease as she constructs a
conception which situates the problem in a classroom context. In the initial stages of
the conversation SJ appears to employ a strategy of guessing thus revealing no
reflection at all [text units 28 - 40]. Her guesses appear to be wild stabs at producing
responses making use of any numbers which are at hand: her interpretation is 'blind'.
Her concern after the initial problem with the word 'proportional' is not with
understanding what 'proportional' means but with obtaining a method to produce an
answer.

Purpose: SJ's willingness to guess at answers and her lack of awareness of any
value in the activity reveal that she perceives the purpose of her work as being the
production of answers within the classroom. Her productive intent is also apparent
from the language used 'how to work it out [e.g. text unit 12, 19, 20 etc.] which is
quite common in a classroom where emphasis is placed upon answers rather than
understanding the processes leading to the answers.

Rationale: SJ is not aware of any value in the work for her, she is aware that this
is revision for a test and so it may be argued that she has an I-rationale for learning but
in that she appears to be content with a 'blind', guessing interpretation it seems unlikely
that she actually possesses any rationale for learning. However, Si does engage in the
work, of course it might be said - 'so would anyone with the attention she is getting'
but in fact that does not necessarily follow, some students in the study did occasionally
reject the opportunity to talk about what they were doing because, for a variety of
reasons, they were not engaging with the task set. Further SJ's normal behaviour is to
engage with the tasks set irrespective of whether she was concurrently held in directed
conversation. Without the possession of a rationale for learning it is argued that she
works as a result of the possession of a basic rationale for engaging in classroom
activity, this is what I call the P-rationale.

Affect: SJ's readiness to engage in 'blind' guess work and her apparent reluctance
to reflect upon the task may be an affective reaction related to her awareness of
uncertainty in this situation. Si is subject to the pressure arising from the conversation
to produce answers and caught between her awareness that there is a mathematical
process and that she does not know what it is. Mandler (1989) proposes a theory
which accounts for anxiety arising from a 'blockage' in resolving a problem. SJ meets
a blockage at the outset, with the word proportional, this is exacerbated as she loses
sight of the real world context. Mandler goes on to suggest that the brain has limited
capacity for concurrent processing and because the aroused anxiety occupies much of
the brains conscious capacity little is available for rational reflective thought on the
problem, SJ's response appears to fit with this theory as she apparently seeks her only
possible route of escape which is to offer a blind guess.

It is accepted that much of the above is little more than conjecture but it is offered to
demonstrate how these seven dimensions may provide a structure for the analysis of
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this type of conversation and possibly the interpretation of the context in which

learners set their goals in classroom activity. The explanation reveals how SJ's initial

conception of the problem (content) may have provoked both her awareness and
elicited an affective response which influenced her interpretation, rationale and
purpose. Provided the interpretation is not 'blind' in the sense suggested above then
her reflection on the task is likely to impact upon her conception and so on, thus
demonstrating how these 'dimensions' relate dialectically. Further it illustrates how the
student is subjectified by the context of the activity at the same time as she is making

her own idiosyncratic constructions of the problem.
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Abstract: This paper describes a quasi-experiment in which 314 students aged between
11 and 13 followed a mathematical thinking skills course and were compared with matched control
groups using pre-tests, post-tests, delayed tests and structured interviews. Assessment instruments
were devised to assess students' levels of cognitive development, and their ability to use strategic
and metacognitive skills. Statistical data were supported by participant observations. Intervention
students performed significantly better than control students in both cognitive and metacognitive
post-tests. Cognitive skills had not been taught directly by the course and transfer is claimed.
Accelerated performance exhibited by intervention groups was maintained in delayed testing. The
teaching of metacognitive processes resulted in accelerated and sustained cognitive development.

Introduction: The Mathematical Thinking Skills Project (funded by the Welsh Office and

the University of Wales 1993/4) aimed to develop and evaluate a thinking skills course to

accelerate students' cognitive development in mathematics. The course was based on activities

developed in the Practical Applications of Mathematics Project (Tanner & Jones, 1993, 1994). The

National Mathematics Curriculum in England and Wales requires pupils to hypothesise and test,

to generalise, and to prove their conclusions. The project aimed to accelerate the development of

such formal modes of thought by enhancing key metacognitive skills such as planning, monitoring

and evaluating. This paper focuses on a quasi-experiment to compare the performance of control

students with those who had followed the course.

Mathematical thinking skills: The conception of thinking used in this paper is that of thinking

as sense-making (McGuinness 1993). We do not intend to attempt to itemise mathematical thinking

skills here for, as Lipman (1983 p.3) has observed "the list is endless because it consists of nothing

less than an inventory of the intellectual powers of mankind." However, ColeS (1993) has

identified three dimensions: skills, dispositions and attitudes; which are generic to any discussion

of the teaching of thinking. In mathematics, a student would know how to perform a procedure,

when and why it should be used, and gain a certain satisfaction from using these skills.

From a Piagetian viewpoint, adolescence marks the onset of formal thought - the ability to

argue from a hypothesis and to view reality as a reflection of theoretical possibilities. Formal

thought has been described as a systematic way of thinking; a generalized orientation towards

problem-solving with an improvement in the student's ability to organize and structure the elements

of a problem (Sutherland 1992). However, these key aspects of problem-solving are metacognitive

rather than conceptual in nature. It can be argued, therefore, that formal thought is underpinned
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by the development of metacognitive skills.

Accelerating cognitive development: Recent research suggests that cognitive development can

be accelerated (eg: Shayer and Adey, 1992; Elawar, 1992). A key feature of these.studies has

been their deliberate enhancement of metacognitive abilities. Indeed, metacognition has been

identified by McGuinness (1993) as a primary tool for conceptual development.

Several researchers have argued for the explicit teaching of thinking strategies to improve

learning (see Christensen 1991 for a review). However, Christensen found that children who had

been explicitly taught learning strategies failed to use them as efficiently or as appropriately as

those children who had invented strategies for themselves.

We assumed a socio-constructivist epistemology, accepting that mathematics is actively

constructed by students rather than transmitted by teachers but that construction takes place in a

social context. Students were given opportunities to validate their constructions against those of

others though discussion. Teaching approaches were intended to develop students' metacognitive

skills and, by so doing, encourage them to construct and evaluate their own strategies.

The course targeted metacognitive rather than cognitive skills. It was expected therefore

that "close transfer" would be achieved and that the metacognitive skills of students in intervention

classes would be enhanced. It was assumed that students would apply their newly acquired

thinking skills to any mathematics which they met subsequently thus learning it in a qualitatively

different way. "Transfer at a distance" into the cognitive domain was not expected to be

immediate, therefore, but as new topics were met. Thinking skills pay for themselves not so much

during the week in which they are acquired but during the years that follow (Perkins 1987).

Methodology: An action research network of six secondary schools was established, drawing

students from a variety of social and ethnic backgrounds. The schools developed and trialled

teaching strategies and materials, supported by members of the project team. The sample was not

random due to the degree of commitment demanded from the teachers involved and consequent

difficulties of self selection. It may best be described as an opportunity sample approximating to

a stratified sample of English-medium schools in Wales.

The action research paradigm was chosen due to the novelty of some of the activities

.proposed. Two teachers from each school, who were to be"involved in teaching intervention

lessons, attended an initial one day induction course to familiarise them with the theoretical'

underpinning to the project and the outcomes of previous work, in particular, effective teaching

strategies. They then attempted to integrate these approaches into their own teaching styles.

Intervention lessons were led by normal class teachers rather than outside "experts". The
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advantages of this approach in terms of realism, pupil-teacher relationships and teacher

development are clear. The approach carries the disadvantage, however, that the experiences of

the intervention classes were not standardised. Regular participant observation by the university

research team was necessary to record the nature of the interventions made. These observations

revealed that the extent to which teachers were able to adopt the approach was variable. In one

case at least, the attempt to marry contrasting styles resulted in confusion. In another case a

traditional outlook overcame the novelty of the materials and a completely didactic approach was

employed. Purely quantitative approaches often fail to see the realities of classroom interaction.

Qualitative data adds some necessary illumination.

Two matched pairs of classes were identified in each school to act as control and

intervention groups. One pair was in year seven and one pair in year eight. Matched classes were

either of mixed ability or parallel sets in every case.

Written test papers were designed to assess pupils' cognitive and metacognitive

development. The sections of the test designed to assess cognitive ability were based on a neo-

Piagetian structure and items were classified as identifying one of four stages of development,

which were referred to as: early concrete, late concrete, early formal and late fornal. Items were

placed in the context of four content domains: Number, Algebra, Shape and Space, and Probability

and Statistics. Items emphasised comprehension rather than recall. Classification took account of

the anticipated memory requirements, National Curriculum assessment, and the results of large

scale studies such as the Concepts in Secondary Mathematics and Science Project, (Hart, 1981).

The metacognitive skills of question posing, planning, evaluating and reflecting were

assessed through a section in the written paper entitled "Planning and doing an experiment".

Metacognitive skills of self knowledge were also assessed by asking students to predict the number

of questions they would get correct before and after each section. In addition to the written papers,

the metacognitive skills of a sample of 48 pupils were assessed through one-to-one structured

'interviews. These were conducted whilst the pupil planned and carried out an investigation into

the mathematical relationships inherent in a practical task.

The pilot course and intervention teaching lasted for approximately five months. Regular

network meetings were held at which experiences were exchanged, strategies discussed and new

activities devised and refined. Post-testing occurred at the end of the course. Delayed testing

occurred four months later. The attitudes of the control and intervention pupils to mathematics

were monitored over the duration of the project using a questionnaire which had been trialled and

evaluated in another project (Hendley, Stables, Parkinson, & Tanner, 1995).
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The Thinking Skills Course: There were two strands to the course:

the development of a structured series of cognitive challenges to stimulate the progressive

evolution of key skills in the areas of strategy, logic and communication;

the use and development of teaching techniques which would encourage the maturation of

the metacognitive skills of planning, monitoring and evaluation.

Underpinning both strands was a continual emphasis on the need to explain rather than describe,

to hypothesise and test, and to justify and prove. Activities were structured to encourage the

development of a small number of strategies. Teachers selected from groups of activities which

were responsive to a range of strategies including, for example: identification of variables;

systematic working; coping with real data estimating, averaging.

Strategies were not addressed separately - skill in comparing and selecting strategies was

required. Each group of activities was responsive to a small number of target strategies and a

student who had attempted an activity from each group would have encountered a wide range of

strategies. The activities in the course did not address directly the questions used in the test of

cognitive ability. We were not "teaching to the test" but were hoping to establish "transfer".

Metacognitive skills were not taught through the content of the materials but through the

teaching approaches used (see Tanner & Jones 1995), which tried to develop skills of planning,

monitoring and self evaluation and, by so doing, encourage students to construct and evaluate their

own strategies through discussion and debate. Teachers encouraged students to think and plan for

themselves and discuss their work, but they were not afraid to intervene to guide discovery.

Results: The main hypotheses to be tested through the quasi-experiment were as follows:

HI. Pupils following the course would have their mathematical development accelerated and

would improve their scores in the post-test more than the control groups.

H2. The metacognitive skills of the intervention classes, as measured by the metacognitive

section of the post-test would be accelerated.

H3. Accelerated cognitive development, as measured by the cognitive sections of the post-test

would be observed in classes where metacognitive skills were taught.

H4. Accelerated performance exhibited by intervention groups would be maintained in delayed

testing.

In each case the null hypothesis was that there would be no significant difference between the

intervention and control groups. The results indicated that the null hypothesis could be rejected

at at least the 5% level in each case. The thinking skills course can thus claim success in each of

its main aims.
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Pre-tests: The assessment paper was trialled with 60 pupils from a school not involved in the

project. Analysis indicated that the test was reliable (Cronbach's alpha = .86), and internally

consistent for cognitive and metacognitive abilities. Correlations between assessments of cognitive

and metacognitive ability made through interview and written paper confirmed that metacognitive

and cognitive abilities were very closely linked (p < .001).

T-tests on the pre-test data showed no significant differences at the 5% level of significance

between control and intervention groups for scores on the attitude questionnaire, the test, or its

cognitive and metacognitive sections.

Post-tests: Covariate analysis of the overall test results using pre-test scores as covariates

showed a significant difference in favour of the intervention groups at the 0.1% (0.001) level.

Null hypothesis one could therefore be rejected. Mathematical development was accelerated.

Analysis of metacognitive skills showed improved performance by intervention classes and

little change in control groups. These differences were significant at the 0.1% (0.001) level (table

I). Null hypothesis two could be rejected. Metacognitive development was accelerated.

Hypothesis three contended that cognitive acceleration would take place when metacognitive

skills had been learned. Qualitative data collected during school visits indicated that the extent to

which teachers were able to adopt the required teaching approaches was variable. In three cases

it was clear that the required approach was not employed and metacognitive skills were not taught.

Data from these schools was therefore rejected.

When these three classes and their associated control groups were removed, analysis of the

nine remaining control and intervention pairs revealed accelerated cognitive development for the

intervention groups which was significant at the 5% (0.05) level (table 1). Null hypothesis three

may therefore be rejected and cognitive acceleration claimed.

Attitudes remained remarkably stable (tables 1 & 2). There was no significant difference

in attitude between the groups at the 5% level at any assessment point. The similarities in attitude

score suggest that there was little Hawthorne effect at work.

Following the analysis of the post-tests, teachers were invited to comment on the results:

"Sue": I definitely think it has helped their thinking skills. I said at the beginning that if

you could convince me you could convince anybody because I was completely

against it but now, I definitely can see the worth of it.

In the new classes formed for the new academic year some of the teachers now had students

from both intervention and control groups. They were convinced that there was a marked

difference between such students:
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"Doreen": Well, the content that they were taught by us last term was exactly the same, both

classes have done the exactly same work. But looking at the work this term, the

intervention class metacognitively, planning and evaluating and that, the intervention

class are, no doubt at all, far better. I have had much better work in from that half

of the class - I've got the best of both classes now in the top set in year 9 from the

intervention and control groups in year 8.

'Sue': Test and homework results this year so far are better from the students from last

term's intervention class. They seem to be able to think more clearly.

An improvement in algebraic skills was noted in both the ethnographic and statistical data.

Teachers reported a greater willingness on the part of intervention pupils to generalise with letters:

"Doreen": In investigations they have been far more adventurous in trying to use algebra but

they were taught formulas in exactly the same way as the other class.

Such comments corroborate the statistical findings.

Delayed tests: The graphs of test scores for the valid schools (figures 1 to 4) show how the

gap which opened up between.intervention and control classes was sustained after the end of the

course. Intervention students continued to progress in parallel with control students but at a higher

level. Covariate analysis of the delayed test results using the pre-test scores as covariates (table

2) showed a significant difference between control and intervention classes at the 0.1% (0.001)

level for the test overall and the metacognitive sections, and at the 5% (0.05) level for the

cognitive sections. Null hypothesis four may therefore be rejected. A sustained improvement in

mathematical performance is claimed. The improvement was sustained in both metacognitive and

cognitive aspects.

Table: 1 Post-test v Pretest - Covariate Analysis (Valid Classes)

VALID
CLASSES

N
Pre

Mean
Post

SD
Pre Post

Prob I > C ?

TEST I 214 17.4 22.9 7.3 8.8

C 203 16.8 19.3 7.0 7.1 .000 Yes

METACOG I 214 4.4 7.0 3.4 4.1

C 204 4.3 4.5 3.3 3.4 .000 Yes

COGNITIVE I 215 13.1 16.0 4.6 5.3

C 203 12.5 14.8 4.5 4:4 .014 Yes

ATTITUDE I 161 3.5 3.5 0.5 0.5

C 161 3.5 3.5 0.5 0.5 .097 ns
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Table: 2 Delayed test v Pre-test - Covariate Analysis (Valid Classes)

VALID
CLASSES

N Mean
Pre Delay

SD
Pre Delay

Prob I > C ?

TEST I 210 17.2 24.2 7.2 8.8

C 213 16.9 20.9 7.1 7.2 .000 Yes

METACOG I 210 4.3 7.6 3.4 4.4

C 214 4.3 5.2 3.4 3.6 .000 Yes

COGNITIVE I 211 12.9 16.6 4.5 5.2

C 213 12.6 15.7 4.5 4.5 .030 Yes

ATTITUDE I 158 3.5 3.5 0.5 0.5

C 168 3.5 3.5 0.5 0.5 .742 ns
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Conclusion The improvement in metacognitive abilities of the intervention pupils was not

unexpected as these skills had been targeted. The cognitive sections of the test, however, had not

been taught directly. Improvement in these sections of the test may be explained by transfer of

learning - by the application of improved modes of thinking to new mathematical contexts.
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The sustained improvement of the intervention classes suggests that meaningful learning had

taken place and provides a justification for the teaching of mathematical thinking skills. The course

was very short and should be regarded as a pilot rather than a complete programme. Most of the

intervention work was completed within twelve weeks. It is all the more surprising therefore that

such clear and positive results have been achieved. Over a longer timescale it is probable that even

greater acceleration could have been realized.
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Towards Statements and Proofs in Elementary Arithmetic:
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This report deals with the analysis of the behaviour of grade VI/VII students whilst
constructively approaching, in a suitable educational context, statements and proofs of
elementary arithmetic theorems. In particular, the report deals in depth with the issues of the
teacher as a mediator of the most relevant characteristics of statements and proofs and the
transition from the statements produced by the students to the relative proofs.

1.Introduction
The issue of the approach to mathematical theorems is dealt with in papers dealing,

especially with _geometry, and above all, concerning the proof of theorems (see Balacheff, 1987;

Hanna & Winchester, 1990; Hanna & Jahnke, 1993). Proving geometry theorems prevails also in
high school students' work (see Moore, 1994).

In Boero & Garuti (1994), an analysis had been performed on how grade VI/ VII students

may realise, in a convenient educational context, a constructive approach to geometry statements.
That report indicated some issues to be dealt with more in depth, concerning:

- The role of cultural mediation that may/must be performed by the teacher.

How to implement the approach of the students to the proof of the statements that they themselves

have formulated.

This report refers to a study having the following objectives:

- Analyze the behaviour of VI/VII grade students when approaching statements in elementary

arithmetic (this is a field that has not been widely considered in the literature dealing with the
approach to theorems).

- Deal more thoroughly with the issue of the role of cultural mediation performed by the teacher.

- Deal with the issue relative to the transition towards the proof in the arithmetic field, with special

reference to two possible formulations' of the statements produced by the students ("relational" and

"procedural").

Discuss the issue of the introduction of algebraic formalism as a "calculation technique" for the
proving process.

Similarly to the approach to geometry theorems, historical and epistemological analysis

helped us to identify some distinctive characteristics of arithmetic theorems and their proofs apt to be

taken as reference points in the investigation of the cognitive behaviours of the students. This agrees

with Vygotskij's theoretical framework: "A suitably organised teaching-learning process results in

mental development... Each scholastic subject has a specific relation with the child's development
course, ... this takes directly to a review of the issue ... of the significance of each single subject

from the point of view of the overall mental development" (Vygotskij, 1978).
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2. Historical and Epistemological Analysis
As for the historical analysis, it is known that even before the IV Century BC, the Greek

mathematicians/philosophers discovered and proved many arithmetic properties. Concerning this

period, Szabo (1961) underlines how the proofs relative to the properties of natural numbers form the

first historical example of.2.01,14A " (i.e. "science", "research"). In Euclid's Elements (Heath,

1956) we find arithmetic theorems that, from an epistemological point of view and as we'll see with

some examples, show already all significant features of modem statements (conditionality, generality,

relational or procedural formulation, etc.). The proofs instead are discursive and use a geometrical

segment model to express "general numbers" (the algebraic language is not yet available).

Like geometry's, also arithmetic's statements are conditional, that is, expressed with the

formulation: "if... then...". In Euclid's Elements we find statements with an explicit conditional

formulation: "If two numbers be prime to any number, their product also will be prime to the same"

(Tome VII, prop.24) together with others where the conditional form is implied: "Any prime number

is prime to any number which it does not measure" (Tome VII, prop. 29).

As for the generality of the statements, the arithmetic field allows us to formulate
significative statements with different degrees of generality. For instance, concerning the set of prime

numbers, we may formulate statements relative to properties of the set itself (as for instance: "Prime

numbers are more than any assigned multitude of prime numbers", Tome IX, prop. 20) or properties

relative to a generic element of the set (as for instance tome VII, prop. 29 mentioned above).

Arithmetic statements may be expressed either in a procedural or a relational manner, i.e.

highlighting the procedure that leads to the result to be validated by the proof, or the relation, or

property, that depends on the hypothesis being formulated and that must be proven. In Euclid's

Elements we find statements expressed in a relational form (such as: Tome IX, prop.20 mentioned

above) as well as statements expressed in a procedural form (Tome IX, prop.22: "If as many odd

numbers as we please be added together, and their multitude be even, the whole will be even" ).

Nowadays for many arithmetic theorems we use algebraic formalism in its functions of

"generalisation - synthesis" (to express the statement) and of "transformation" (to prove the theorem

by means of an algebraic "calculation").

For what concerns the introduction of algebraic formalism in arithmetic, the need to express

the general resolutive methods of arithmetic problems with a suitable formalism, syntactically

different from common language and from Euclid's segments model, is manifested in the work of

Diofanto (IV Century AD). One thousand year had to pass, however, before Viete put together a

formalism adequate to meet this need. Still from an historical and epistemological point of view,

concerning the use of algebraic formalism, we can see how the statements and proofs relative to

arithmetic theorems have formed, from the end of the past century on, the preferred field for
logicians, mathematicians and artificial intelligence researchers to try and reduce the proofs to
calculations, exploring thus the issue of the "truth" in mathematics and developing also automatic

proving programs.

Concerning the significance of arithmetic statements, in the history of the theory of numbers

we may trace back different significance criteria, often cohexistent at the same time: intellectual
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challenge (e.g.: the "Fermat's theorem"), relative to the difficulty of the proof; knowledge of the deep

structure of the set of natural numbers (e.g.: infinity of the set of prime numbers); paradigmacity and

importance for the construction of more general algebraic structures (e.g.: the theorem: "given two

natural numbers a and b, with a>b, there exist two natural numbers q and r such that a=bq+r"

produces in Algebra an axiom in the introduction of Euclidean rings). Let us note that, according to

these last two criteria, a wide knowledge of arithmetic (if not of an even larger mathematical domain)

is required to evaluate the significance of an arithmetic statement.

These historical and epistemological considerations have been useful for us, as seen in the

next paragraphs, to focus the issue of the role of the teacher, set up the teaching experiment and
analyze the behaviour of the students.

3.The teacher as a mediator
When approaching arithmetic statements and proof, there exist at first a wide gap between

the knowledge of the teacher and the knowledge of the students. In particular, the teacher possesses

knowledge and experiences unknown to the students in the areas of:

- Linguistic formulation of the statements and their characteristics of generality and conditionality.

- Significance (which, as we have seen at point 2, requires a reference to a mathematical culture
which only the teacher has).

- Meaning of the proof in mathematics and the modalities and techniques for its attainment.

- Algebraic formalism (as an effective instrument to express statements and prove theorems).

The knowledge of the students may be made closer to the knowledge of the teacher:

- In part through constructive activity required of the students, therefore through an indirect mediation

on the part of the teacher implemented with the choice of suitable tasks promoting the generation by

the students of significant and useable products for classroom work.

- In part through classroom work on the students' products, through an indirect mediation on the part

of the teacher, implemented in privileging some of the students' products and in gradually bringing

out the relevant characteristics which "must" be possessed by their mathematical products (such as

generality and conditionality of the statement as well as the logic consequentiality of the proofs).

- In part through a direct mediation on the part of the teacher such as the comparison with the official

"texts" of arithmetics, the introduction of effective formalisms (such as the algebraic formalism) etc.

All these forms of mediation must take into account the cognitive requirements of the
students, manifested through their productions and the cultural and cognitive meaning that these
products have.

4.Planning of the Teaching Experiment
The educational context where our teaching experiment was located was that of the Genoa

Group Project for the Comprehensive School. Relevant to the study reported in this paper are:

The practise of written verbal reporting on the part of the students, concerning both the resolution of

the problems and the relative reasoning and reflections.

The development of competencies concerning arguing, producing hypotheses, etc. in extra-
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mathematical "experience fields" (Boero, 1989).

- The creation of a classroom environment where the coherence of arguments, the quality of the

processes producing hypotheses and the quality of the resolutive reasoning are very much valued.

The teaching experiment involved two classes in 1992/93 and two classes in 1994/95.

Let's now go on to the description of the assignments (for further details, see Sibilla, 1994):

By means of the individual assignment: 'Suppose you have a certain set of numbers. Apply

the transformation'+I' to all the elements of the set. What are the effects of the transformation?" and

in general, by means of assignments of the type "what happens if... ?" referred to a set of numbers

selected by the students, followed by the comparison between the "effects" that had been identified,

the experiment aimed to create, in the numbers "field of experience" (by now sufficiently familiar to

an 11-year old student), an initial awareness of the fact that there exist "unvarying" properties for the

change of the given set of numbers being considered. The students, in other words, were to be led to

identify and express in a conditional format, properties having characteristics of generality. Another

purpose was also to raise the issue of the justification, through reasoning, of properties which do not

appear immediately true (until their proper moDo

By means of the individual assignment: "You have a given set. What transformation do you

have to apply to the set so that the transformed set is only formed by even numbers? (Help yourself

with tables if you want)" and the assignment: "You have a given set. What transformation do you

have to apply to the set so that the transformed set is only formed by odd numbers?" and by means

of the subsequent discussion, the experiment wanted to "force", via the identification and the
expression of a variable, the process of algebraic formalisation.

By means of the assignment "What happens if you add together two consecutive odd
numbers? Is there a regularity? And if so, why?" and the following discussion, the experiment
wanted to stimulate an experience of exploration of numerical facts possibly leading to the
identification of various properties: general because they do not vary with the particular pair of

selected consecutive odd numbers, and (implicitly) conditional because they would depend on the

conditions (odd and consecutive) of the numbers.

Other assignments, such as: "what happens if you add two even consecutive numbers?"and

"what happens if you add three odd consecutive numbers?"were used to evidence the conditional (as

well as general) character of the statements relative to the properties of natural numbers, as well as

develop a dexterity with algebraic formalism as a tool to explore and prove arithmetic theorems.

5. Analysis of the behaviour of students in the initial stage

5.1. Production and comparison of statements in a class
The assignment: "Suppose you have a certain set of numbers. Apply the transformation

'4-1' to all the elements of the set. What are the effects of the transformation?" produced in the four

classes a large variety of answer texts, due to its character, purposely "unleading".

Some of the texts that were produced appear to be rather superficial, of little consequence from a

mathematical point of view, and not very general in character: for instance: "If I have the set 2, 3, 4, it
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becomes the set 3, 4, 5"; other texts contain statements which, although not very general, appear to

be quite significant: "If the set contains numbers ending with 9, the transformation +1 transforms

them in numbers ending with 0 and they have an extra digit". Other statements that have been

produced are more general: "The set is transformed in another set with the same number of elements".

Vis a vis with these products by the students, the teacher must select those which are more

suitable, trying to bring out (or mediate) those aspects which are important from a cultural point of

view (see point 3.),In a VII grade class, for instance, the following statements were compared:

a) If I have 3, 4, 5, 6, 7, their sum is 25. When I add Ito the numbers, their sum is 30.

b) After adding I there are both even and odd numbers.

c) By adding I, if it is even it becomes odd and if odd it becomes even

d) An even number added to an odd number becomes odd, an odd number added to an odd number

becomes even.

The character of generality of the statements may be negotiated, at least in part, with the

students. In practise, in this class, at this stage of the teaching experiment, the negotiation took place

through the comparison of statements presenting common elements and asking the students to

establish what happened to some properties that they had identified if the reference set was changed,

and to compare statements which (like c) and d)) had common elements.

Through a teacher-led discussion, the students were able to make significant observations concerning

the character of generality of the statements, in particular discovering that the first is valid only for

that specific set. The second statement created some perplexity in the way it is formulated: "It almost

appears that you can get odd or even numbers from any set of numbers. It does not talk of the initial

situation. It the beginning set is formed by even numbers only, the statement is no longer true". The

third and fourth statements were instead considered general (they are valid for all sets on which the

"+1" transformation is carried out, but express a different degree of generality: "In the fourth, one is

considered as odd, but it could also be 3 or 5"). Many students observed also that the fourth

statement goes beyond the level of generality requested by the assignment.

The conditional character of the statements, that was to be considered at several stages

during the course of the teaching experiment, appeared in this class during the discussion of the

statements above. In particular, the teacher led the class to the discovery that in the third statement the

conditionality is explicit, while in the fourth, it is implied.

In this class, the problem of the significance had been introduced by comparing the

statement a) with the other three: For the students, at this stage of the work, the triviality of the

statement was clear ("in a) it is like saying that all the numbers increase of one unit") without going

further than this level of reflection. In our opinion, the capacity of the students to autonomously

express a judgement relative to the significance may be the result only of an extended activity aiming

to bring out as "significant" those properties which are not immediately apparent (intellectual

challenge) and/or that contribute to a deeper insight in the numeric field.

This part of the teaching experiment confirms (in the field of arithmetic) the hypothesis of

feasibility of the objective to get grade VII students constructively involved in approaching statements
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of theorems in an adequate educational context, strongly depending on the role of the teacher , stated

in Boero & Caruti (1994) for geometry theorems.

5.2 Procedural and relational statements: Approach to the proof in two classes.
In two grade VII classes (39 students), with the same teacher, after the first comparisons,

the attention veered on the following property, offered by a girl: 7f 1 add 1 the divisor changes. For

instance, 365 is divisible by 5, 366 is not':

Rather than a statement, this is the observation of a property that, even in its rather poor formulation,

the teacher was able to judge as being very significant, not being immediately apparent and suitable to

illustrate some structural characteristics of the set of the natural numbers.

The property was then submitted for discussion to the two classes. The students seemed little
convinced that it was true and, moreover, they were perplexed concerning its formulation. At this

point the teacher asked the students to ask questions in order to formulate the statement more
precisely. These were the questions of the students:

- "Is it true for all numbers? How can you be sure?"

- 'Do all divisors change or only some?"

- 'This is not true for 1, because I is the divisor of all numbers, but what about the other divisors?"

- "If the divisors change, do the multiples change also?"

As it may be seen by the questions, the problem of the greater precision in the formulation

of the statement was intimately weaved with the problem of the verification of its validity, even if

gradually, through numerical examples, they started to realise that the property might be true.

Later the students were asked to rewrite the statement. In substance two types of formulations

emerged (considered by the students as being equivalent: "They say the same property') :

I) A number and the number immediately alter have no common divisors except for the number I

(relational statement)

II) If you add Ito a number, all its divisors change, except I (procedural statement)

At this point, it was interesting to determine how much the formulation of the statement

could condition the proving process, and in what measure the proving process could be
autonomously managed by the students in a situation where the students were strongly motivated to

prove the property which they had discovered.

For this reason, the students were asked to: "try and verify if the property expressed in the two
statements is true and why".

All the attempts made by the students of the two classes seem influenced by the formulation

of the statement that they considered.

Most of the students (32) refer to the relational statement: they find all the divisors of a

number and its next and verify that there are no common divisors, except for 1.

This procedure does not help them in the justification of the statement (none of them was able to attain

to a real proof), but helps them in substance to get an opinion on its validity. Different behaviours,

however, were observed amongst the students proceeding in this way:

- Some try on "large" number, looking for an empirical verification of the validity of the statement.
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- Most of the students, in trying to reach a general justification try to proceed for "classes" of

numbers, even if the justifications are only partial or wrong (as evidenced by the discussion
following): "Between a prime number and the number following it there may not be common divisors

since a prime number has as divisors only 1, which we have excluded at the beginning, and itself,

which changes from number to number" (it was not hard for the students to realise that this statement

is useless if one of the two numbers being considered is not prime, such as in the case of 14 and 15).

"A number may not have common divisors with the next number because one is odd and the other is

even" In this case also it was not difficult for the students to understand, through samples (such as

30 and 33) that the justification is not valid.

Some of the 7 students referring to the procedural statement consider the divisors of a

number and try to establish if the same divisors are also the divisors of the following number,

realising that the unit, added in the transformation, constitutes the remainder of the division. This is

the way that a student comes to the following proof: 'This statement is true because between a

number and the number immediately after, you add 1, so that the divisor of the first number is not

right for the other because the 1 that was added forms a remainder. (...) For instance 15:3=5 and

16:3=5 remainder 1."

Another proof that was produced is: "When skip-counting, except when you skip-count by 1, it is not

possible that there are consecutive numbers since the multiples ofa number derive from the beginning

number that is added all along, so that it is impossible that two multiples are also two consecutive

numbers, for instance 2-4-6-8... or 3-6-9-12...". In this case also the proof appears to be influenced

by the procedural formulation of the statement.

The other five students, although not reaching to a complete proof, make some steps in the first of the

two indicated directions.The discussion and the comparisons relative to these two proofs allow

(under the guidance and with the mediation of the teacher) to bring out deficiencies, analogies and

differences with the other texts that had been produced.

The work of these two classes appears to be satisfactory as a whole, both for the quality of

the two proofs that were produced, and for the critical capacities demonstrated by most of the

students towards the unsuccessful attempts.In our opinion, it also provides some elements for further

studies, especially the hypothesis that in the case ofa statement produced (or assumed) by a student,

its proving process may naturally evolve from it as a textual "development" of the statement itself

6.The problem of the approach to the proof as an algebraic calculation
The overall positive result of the "arguing" approach to the proof, illustrated at point 5.2,

raises the issue of the opportunity of a fast transition to the proof as a calculation carried out on the

formula expressing the elements on which the property to be proved is to be verified.

It is apparent that for properties such as those considered in the last two stages of our
teaching experiment, the algebraic formalism makes easily accessible to the students proofs that

would otherwise present many difficulties, while the proof of the property considered at point 5.2

would not be made any easier by the availability of algebraic formalism. There may be imagined
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therefore both a development of classroom activities such as that hypothesised in our teaching

experiment (where the choice of the statements from stage 2 on lends itself to the best use of algebraic

formalisms), and a development based on other types of statements (like some contained in Euclid's

Elements) that may be proved also without resorting to algebraic formalism.

On the basis of our experience, it would appear to us that the conquer of algebraic
formalism and its use for proving, would involve the students in discussions and considerations

regarding conventions, transformation rules, etc. that may distract them from the logical mechanics of

the proof, without, on the other hand, producing extended learning results (as far as the ability of

autonomously using algebraic formalism for proving). It would appear to us moreover, that the

influence on the algebraic formalism on the development of the proof is very strong and may give

place to a development of the proof linked to the transformation mechanism and not the analysis of

the property to be proven. We would like to mention, in this respect, an episode occurred in a class

where, by the end of the teaching experiment described at point 4. only one student manages to

autonomously use algebraic formalism for proving. During the teaching experiment, the student must

prove that the sum of two consecutive odd numbers is divisible by 4. He gives a proof in words,

writing that "the sum of two consecutive odd numbers is like taking an even number, take away one

from it, and sum it to the same even number and add one. So it is the sum of two even numbers and

therefore is divisible by four ". At the end of the teaching experiment he was asked to prove the same

property using algebraic formalism; he writes:

"2n + I +2n +3 =2n + 2n+ 4 =2n +2n +2 +2 = (2n+2)x2".
On the other hand, it is through the very use of the algebraic formalism as a tool for the

expression of properties and as a calculation tool when proving arithmetic properties that the students

may grasp the powerfulness of the tool that has been introduced and may make the first significant

experiences of its "transformation function".

A compromise solution for this problem appears then that of using different classroom

activities to approach the two objectives: development of demonstrative reasoning as an arguing and

logical experience; introduction to the algebraic formalism and "exemplary" use in carrying out proofs

as "algebraic calculations"
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Provnrmg to exp

David A. Rend

University of Alberta

Abstract: It has been suggested that in teaching proving the explanatory potential of proofs
and proving should be emphasized. My recent research has indicated that students are more likely
to prove to explain than they are to prove to verify, but that there are important aspects of proving
and explaining that must be considered; these include the degree of formulation of the proving, and
the alternative of explaining by analogy.

taffiroduction

Gila Hanna (1989) has suggested that teachers should be aware of the potential that proofs

have of explaining as well as verifying mathematical statements. Others (e.g., de Villiers 1991,

1992) have conducted empirical studies which lend support to this suggestion. In my recent
research I have been attempting to develop a clearer description of the reasons proving is used by

students in problem solving. Chief among these reasons, or needs, are explaining, exploring, and

verifying. A distinction between my work and that of Hanna and de Villiers, is that they referred

to proofs which were presented to students as explanations, while I am more concerned with the

explanatory power of the proving students do themselves. It should also be noted that I use
"proving" to describe any deductive reasoning, even if no proof is produced.

Hanna described explaining in this way:

I prefer to use the term explain only when the proof reveals and makes use of the
mathematical ideas which motivate it. Following Steiner (1978), I will say that a proof
explains when it shows what "characteristic property" entails the theorem it purports to
prove. (p. 47)

This characteristic, of revealing the underlying principles on which the proof rests, is undoubtedly

a part of what makes proving a useful way of explaining for students.
This paper reports some results from my research into students' proving in problems solving

which relate specifically to proving to explain. I . will distinguish between formulated and
unformulated proving to explain, and provide examples of proving of different degrees of
formulation. I will also give an example of explaining by analogy which will illustrate the conflict
between explaining by proving and explaining by analogy, under the influence of social
constraints. I will conclude by describing some implications for the use and acceptance of
explanations based on proving.

Formulation is one of the most important characteristics of proving when used to explain.
Formulation refers to the knowledge or awareness, on the part of the prover, that s/he is praying.
It could also be described as the degree to which the proving is thought-of and thought-out.
Formulation is related to two other characteristics of proving: its articulation, and the hidden
assumptions made while proving. The extent and clarity of the spoken or written articulation of
proving has implications both for the possibility of the proving being interpreted by others, and for
the formulation of the proving. Being aware of one's own proving, and being able to articulate
that proving, are interrelated. Articulating proving assists in formulating, as articulation makes
aspects of proving tangible. At the same time formulated proving is more easily articulated. All

proving involves some hidden assumptions. These assumptions can range from wrong
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assumptions, through implausible and plausible assumptions, to assumptions which are known
within a community. The formulation of proving reveals hidden assumptions, making the
presence of wrong or implausible assumptions less likely. Articulation and hidden assumptions
provide valuable clues to formulation, in addition to being important characteristics of proving in
and of themselves.

Explaining in problem solving
The results reported here are taken from a larger research project on proving, involving

observations and interviews with high school and university students engaged in problem solving.

The general object of this research project is the investigation of the needs which proving addresses

for mathematics students. Other aspects of this project have been reported in Reid (1994), Kieren

& Reid (1994), and Kieren, Ririe, & Reid (1994). The examples below are taken from problem

solving session which involved four university students, Rachel, Eleanor, Ben, and Wayne,
working on the Arithmagon problem (from Mason, Burton & Stacey, 1985; see Fig. 1). I will
describe briefly the activities of the four participants, pausing to provide more detail and analysis of
episodes of explanation.

A secret number has been assigned to each corner of this triangle. On each side is written
the sum of the secret numbers at its ends. Find the secret numbers.

Generalize the problem and its solution.

27

Figure 1: The Arittunagon problem

Partially formulated proving to explain.
The four participants were seated at an "L" shaped table in such a way that Rachel and Eleanor

could easily work together, as could Ben and Wayne. Eleanor and Ben were seated cldsest to the

bend in the table. Rachel and Eleanor began by setting up systems of equations and solving them.

They arrived at the solution after about four minutes. Ben guessed the solution within 30 seconds

of being given the prompt. He and Wayne then worked independently, trying to find patterns in

the solved puzzle. Ben concentrated on relations between the numbers, while Wayne attempted to
make use of geometric properties of triangles.

Once everyone had a solution they compared notes. Although Ben initially claimed to have no
idea how he had found the answer so quickly, he eventually reconstructed a plausible explanation
(Long dashes, , indicate short pauses):

(Al) Ben: You know how I did that? The number here had to be less than 27, and
less, it had to be less than 18, the number here, right, had to be less
than 18. And the number here had to be less than 11, right?
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Note that while there is a lot left out of his explanation, Ben is fairly articulate in explaining how

one might limit the possible cases to a number small enough to make testing all of them feasible.

The basis of the constraints, the justification for the use of "had to be," is a deduction from a

hidden, but plausible, assumption that the secret numbers are all natural numbers. This partially

formulated proving to explain was fairly successful as such, although it left Eleanor and Rachel

with a need to explore its workings in more detail. Ben's later proving was less formulated, and

less successful as explanation, as the next example will show.

Unformulated proving to explain
Rachel and Eleanor tried to use Ben's method to solve another triangle, and tried to see if there

are other constraints that would help them determine the secret numbers exactly. Ben watched their

efforts, and after a few minutes he claimed that any triangle could be solved by his constraints

method. In an effort to make him aware of his assumption that only natural numbers could be

used, I suggested that he solve a triangle with the values 1, 4, and 12 on the sides (The secret

numbers are 7.5, 4.5, and 3.5) .

(B1) Ben: On the sides, 1, 4, 12. Well that's 0 or 1. One of them has to be 0 No,
That's impossible Because, I mean if this one is 0, that one has to be
1, that one has to be 3, this is adds up to 3. If this one is 0, this one has to
be 4 and that one has to be 1.

(B2) Wayne: Who said it's got to be 0 though?

(B3) Ben: Well, Yeah It still shouldn't matter if you go down on the number
line you still have to go up on the number line

Ben's initial comments (B1) are similar to those quoted above, in line A1. He explains why

the triangle is impossible, by reasoning deductively from the implicit assumption that the secret

numbers are natural numbers. When Wayne questions his hidden assumption, 'Ben immediately

offers further explanation (B2). Note that this explanation has a different character from the ones

he has offered before (Al & B1). It is much less articulated, making it difficult to judge how

aware Ben was of his reasoning. His language suggests that his proving is based on an image of

the relationship between the values. These features lead me to characterize this explanation as

unformulated proving.

Unformulated proving is not very useful as explanation, as is illustrated by Ben's continuing
attempts to explain:

(Cl) Eleanor. But this doesn't have to be 0

(C2) Ben: But even if it is, like let's say negative 4 and negative 3, right? You still
have to get this to be 4 it has to be 7, all right? It's still minus. So it will
still be like, 3. You know where I'm coming from?

(C3) Eleanor. Say it again.

(C4) Ben: The difference, the difference between these two is still always going to
be 1, right? No matter if you represent it with negative or adding.

Eleanor's request to "say it again" marks the failure of Ben's unformulated proving to explain

to her. Ben has based his argument (in C2) on a hidden assumption, which in this case is wrong.

He seems to believe that the difference between the two secret numbers is 1. This is true in the

case where one of them is zero, which he had just been considering. The two numbers he names,
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-4 and 3, have a difference of 1, and these numbers do not work. In fact, if the difference must
be 1, there is no way that a difference as large as (12-4) could occur. This provides the basis for
Ben's belief that the puzzle can not be solved.

Ben seems determined to explain why the triangle has no solution. There are several needs
interacting in this case. In order to convince Eleanor, he needs to be able to explain the situation to
her, and to do so he needs to explore it more thoroughly than he had to in order to verify for
himself that it could not be solved. His failure to convince Eleanor had the effect of undermining
his verification, which caused him to shift from explaining what he had verified to Eleanor, to
exploring the now reopened question of whether of not the triangle could be solved.

Ben's unformulated proving did not work as an explanation for Eleanor, in spite of her
willingness to listen carefully, and to work through Ben's ideas. The next example shows how
Eleanor's receptiveness and Rachel's ability to formulate her proving combined to produce an
explanation.

Formulated prOving to explain
Eleanor, Ben, and Wayne continued to work together, exploring the situation 'inductively.

They discovered iv o ineresting properties: 1) The sum of the numbers on the sides is twice the

sum of the secret numbers; (a+b+c) = 2(x+y+z). 2) The sum of a secret number and the number

on the opposite side is the same for all the secret numbers; (a+x) = (b+y) = (c+z). During this time

Rachel had been working independently, exploring using algebraic derivations. After twenty

minutes Rachel announced that she had found a formula: x a + b c
. Ben and Wayne

2

immediately began to verify it inductively, but Eleanor asked for an explanation, "How did you get
that?"

Transcript Rachel's lniling
(DI) Rachel: X plus Y equals A (1) x+ y a
(D2) Eleanor. Yeah

(D3) Rachel: Y plus Z equals B and Z plus X
equals C.

(2) y + z b

(D4) Eleanor. Yeah (3) z+x- c
(D5) Rachel: And then just add A and- Add the

first two equations.

(D6) Eleanor. And you conic up with?

(D7) Rachel: This. That's right, right? That's
what I got?

(D8) TK: Work it through cleanly for her.

(D9) Rachel: Oh, OK. So, 1 plus 2 is X plus Y
equals A, Y plus Z- Did 1 add?

(1) x +y.a

(D10) TK: Yeah.

(D11) Rachel: Oh it doesn't matter which two you
add up.

(2) y + z b

(D12) TK. It doesn't matter.

(D13) Eleanor. We do come up with something.
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Transcript

(D14) Rachel: So X plus 2Y plus Z equals A plus
B

(D15) Eleanor. Yeah.

(D16) Rachel: But, X plus Z is C, right?

(D17) Eleanor. Right.

(D18) Rachel: So-

(D19) Together. -2Y plus C-

(D20) Eleanor. Yeah. OK

(D21) Rachel: -equals A plus and urn,

(D22) Eleanor. Yeah, So 2Y equals A plus B 2y - a + b - c
minus C

Rachel's explanation to Eleanor is quite formulated. She articulated her steps clearly, both in

her writing and her speech. She was aware of the structure of her own reasoning, as is indicated

by her observation that she is free to choose any pair of equations to add together (D11). Her only

hidden assumptions are the basic rules of algebra and arithmetic which she can safely assume are

known to and shared by Eleanor.
One might expect that Rachel's formulated proving would be the preferred form of explanation

for this group. The next example shows that this was not so, and indicates the importance of both
the clarity of the explanation, and the receptiveness of those to whom it is offered, to the
acceptance of an explanation.

Explaining by analogy versus explaining by proving
After Ben and Wayne had verified Rachel's formula, and Rachel had explained it to Eleanor,

Wayne wondered why it is necessary to divide by 2. Ben, Rachel, and Wayne all offered

explanations:

(El) Ben: You know why you divided by 2, is because-

(E2) Rachel: Because there's two sides.

(E3) Ben: No. No, it's because-

(E4) Wayne: There's two other points, to be solved for, no?

(E5) Ben: No. No. No. We found out that Y, X + Y + Z is half of the outside
points.

(E6) Wayne: That's right!

Rachel's explanation (E2) for the division by 2 is quite correct, and based on the proving she

had done in deriving her formula The brief statement she was able to make was not, however,

sufficient to communicate anything to Ben and Wayne. Even though her statement was did not

explain anything to Ben and Wayne, I would consider it to be an example of using formulated

proving to explain. The proving, however, was all done ahead of time, and she merely assumes it

in her explanation.
Wayne's explanation (E4) is an example of an explanation by means of a weak analogy. The

number 2 is involved both in the division by 2, and in the number of vertices to be solved, once the
first is known, but that is the only connection between them. It is interesting that, even though

Rachers_writing

x+2y+z-a+b

2y+c -a+b
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Wayne had been the first to voice a need to understand the division by 2, but at this point he seems

more anxious to suggest his own explanation than to hear Ben's.

Ben's explanation (ES) is a strong analogy. The analogy is between two equations with
variables, instead of between an equation and a state of affairs (as in the case of Wayne's analogy).

This strength is likely to have led to Wayne's acceptance of Ben's explanation over his own (E6).
Ben is referring to the relationship a+b+c = 2(x+y+z), which he had discovered inductively with
Eleanor and Wayne (see above).

The explanations which were rejected were a weak analogy (Wayne's, E4) and a deductive
explanation which could be taken to be a weak analogy (Rachel's, E2). The students preferred the

strong analogy, which was based on several points of connection. This is sensible, as a strong
analogy could have (and in this case does have) the potential to be developed into a deductive
proof.

It is worth noting that even though Rachel's explanation was the most thought out, and based

on deduction rather than analogy, which might suggest it was a more certain explanation, it was
apparently not even considered by the others. This illustrates a weakness of proving versus
analogy for explaining. Proving is a process which must be formulated to be communicated, and

must be followed with some care to be understood. In this situation the social dynamic did not
afford Rachel the opportunity to make her case clearly. Ben's analogy (ES), on the other hand,
could be understood immediately by Wayne and Eleanor, who were familiar with the context to
which he was making links. Rachel could also see these links after Eleanor showed her the
formula which was being referred to.

Conclusions
The examples above illustrate the range of formulation which proving to explain can cover.

While Hanna (1989) points out that some proofs are so formal that they do not explain, proving

can also fail as explanation because it is not sufficiently formulated. Further, proving to explain

has disadvantages compared to explaining by analogy, in contexts where articulation of the proving

is difficult.

The deductive explanations described above involve both unformulated proving and formulated

proving. They show that unformulated proving is not very successful in explaining to others,
although it might be explanatory to the person proving. Unibrmulated proving lacks the quality of

clarity, which explanation to others requires. Formulated proving is more successful as a way of

explaining. Its main weakness is the time and attention it requires of the listener. This can make it

useless as explanation in social contexts which do not allow for extended explanations.

The main rival of proving for explaining is the use of reasoning by analogy. Explaining by
analogy is more or less successful, depending on the strength of the analogy. A strong analogy
might be accepted in preference to a deductive explanation. A weak analogy, however, seems to

leave MOM for a better explanation by formulated proving. Some explanations by analogy make

connections which could be established deductively, as was the case when Ben explained the
division by 2 in Rachel's formula (ES). It should be noted, however, that I. have yet to observe
students attempting to transform an analogy in this way. The question of the relationship between
analogy and deduction could be a useful focus of further research.

In thinking about explanation it is essential to keep in mind that more than the intent to explain
is required for the success of an explanation. Any means of explanation must also involve
articulation of sufficient clarity to allow others to understand it. In addition those others must be

150 3 142



willing to devote the time and attention necessary to understanding the explanation. It is the
combination of these factors which makes an explanation, and which puts certain constraints on the
circumstances in which proving can be explaining.
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Beyond the Computational Algorithm:

Students' Understanding of the Arithmetic Average Concept

Jinfa Cai

Marquette University, USA

This study examined 250 sixth-grade students' understanding of the arithmetic average. It
was particularly designed to provide in depth information about students' knowledge of
arithmetic average with respect to computational algorithm and conceptual understanding
through conducting a fine-grained cognitive analysis of students' written responses. Results
of this study showed that 90% of the students knew the "add-them-all-up-and-divide"
algorithm for calculating average. However, only about a half of the students showed
evidence of having conceptual understanding of the concept. This study suggests not only
that the arithmetic average concept is more complex than the simplicity as the
computational algorithm suggests, but also implies that the average concept should be
taught beyond the computational algorithm.

In the age of information and technology, society has an ever-increasing need for

data in prediction and decision making. The National Council of Teachers of Mathematics

(NCTM) suggests that "it is important that students develop an understanding of the

concepts and processes used in analyzing data." (p. 105, 1989) Arithmetic average is one of

the important and basic concepts in data analysis and decision making. Data reported and

used in daily life, scientific journals, and public media frequently include average.

Statistical analysis and inferences are conducted based almost exclusively on the average

and others which are closely related to the average, such as variance. In another words,

average is not only an important concept in statistics, but also an everyday-based concept.

Although the average concept seems to be as simple as the computational algorithm

suggests, previous research (e.g., Mevarech, 1983; Pollatsek, Lima, & Well, 1981; Strauss &

Bichler, 1988) indicated that both precollege and college students have many

misconceptions about the average concept. The misconceptions are not due to students' lack

of procedural knowledge of calculating an average, rather due to their lack of conceptual

understanding of the concept. For example, Pollatsek et al. (1981) found that college

students seemed to have no difficulty computing the average of a set of given numbers, but a

large proportion of those students could not solve problems involving weighted average.

For example, less than 40% of the college students were able to solve the following

problem: "A student attended college A for two semesters and earned a 3:2 GPA (grade-

point average). The same student attended college B for three semesters and earned a 3.8

GPA. What is the student's GPA for all his college work?" The most common incorrect

answer was 3.5, which apparently resulted from the directly averaging the GPA's for college

A (3.2) and for college B (3.8).

The arithmetic average is defined by adding the values to be averaged and dividing

the sum by the number of values that were summed. Strauss and Bichler (1988) argued that

the simplicity of the computational aspects of the average concept might make it appear to
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be very straightforward and simple. In fact, most students' understanding of the average
concept is the "add-them-all-up-and-divide" algorithm (Shaughnessy, 1992). Previous

studies have examined students' misconceptions about the average concept (e.g., Lindquist,

1989; Mevarech, 1983; Pollatsek, Lima, & Well, 1981; Strauss & Bich ler, 1988) and

explored the possible instructional approaches (e.g., Mevarech, 1983; Hardiman, Well, &

Pollatsek, 1984) to promote understanding of the average concept, but no study directly and

explicitly examined students' performance on the average tasks involving computational
algorithm and conceptual understanding.

This study was designed to provide in-depth information about students' knowledge

of arithmetic average with respect to the computational algorithm and conceptual

understanding through conducting a fine-grained cognitive analysis of students' written
responses.

METHOD
Subiects

A total of 250 sixth-grade students from the Pittsburgh Metropolitan area

participated in the study. The students who participated in the study are judged to be above

average in mathematical ability by a group of mathematics teachers and a group of

mathematics education researchers in the Pittsburgh Metropolitan area.
Tasks and Administration

Figure 1 shows the multiple-choice average task and the open-ended average task.

The multiple-choice average task was administered to the sample with other 17 multiple-

choice tasks and students had a total of 15 minutes to complete these 18 tasks. The open-
ended average task was administered to the sample with six other open-ended tasks and

students had 40 minutes to complete all seven open-ended tasks. In the open-ended average
task, students were asked to provide an answer, and importantly, they were also asked to

explain how they found their answer. In particular, the open-ended task requires students to
find a missing number when the first three numbers and the average of the three numbers

and the missing number are presented in a graph. In order to solve the problem, students

must have a well-developed understanding of the average concept. Thus, the open-ended

task is appropriate to examine students' conceptual understanding of the average concept.

Insert Figure 1 about here

Data Analysis

Each response for the multiple-choice average task was coded as correct or incorrect.

In contrast, each student response to the open-ended average task was subjected to a fine-

grained cognitive analysis. In particular, each response was coded with respect to four

distinct aspects: (1) numerical answer, (2) mathematical error, (3) solution strategy, and (4)
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representation. The categorization scheme used in this study was adapted from Cai et al. (in

press) in their coding of students' responses to a similar open-ended average problem.

RESULTS

Results for the Multiple-choice Average Task

Students appeared to have a little difficulty selecting the correct answer for the

multiple-choice average problem. In particular, 88% of the sample chose the correct answer

for the task.

Results for the Open-ended Average Task
Numerical answer and mathematical errors. The numerical answer was what the

student provided on the answer space on the task, and was judged correct or incorrect. Only

about 50% of the students provided the correct answer of 10 for the open-ended average task.

Students who did not give the correct answer of 10 were subject to an analysis of

error types. Overall, 126 (50%) students were included in the error analysis. Five different

types of errors were identified and those are described below:

Minor error: The student had correct solution process, but they made a minor calculation
error, or they gave the total number of cups sold in four weeks (28) as the answer.

Violation of "stopping rule": The student used a trial-and-error strategy, but stopped trying
when (a) the quotient was not 7; (b) the remainder was not zero; or (c) the quotient was
not 7 and the remainder was not zero.

Incorrect use of computational algorithm: The student tried to directly apply the
computational algorithm of the average to solve the problem, but the application was
incorrect.

Unjustified symbol manipulation: The student just picked some numbers from the task and
worked with them in ways irrelevant to the problem context (e.g., added them
together).

Errors cannot be identified: A student's work or explanation was so unclear or incomplete
that the error type could not be identified.

Table 1. Students' Mathematical Errors in Solving the Open-ended Average Task

Error Types % of students (n= 126)

Minor error 11

Violation of "stopping rule" 10

Incorrect use of average concept 34

Unjustified Symbol manipulation 24

Errors cannot be identified 21

Table 1 shows the percentage of students who made mathematical errors in each

category. Of the five types of errors, the largest percentage, one-third, of the students tried

to directly apply the computational algorithm to solve the problem. For example, a student

added the numbers of cups sold in week 1 (9), week 2 (3), week 3 (6), and the average (7),

then divided the sum by 4, the student then gave the whole number quotient (6) as the

answer. Obviously, this student appeared to know the computational procedure of
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calculating an average (i.e., "add-them-all-up-and-divide"), but he/she appeared to not know

what should be added and what should be divided and divided by.

Fourteen students, which is about 11% of the students who had an incorrect answer

made minor errors. For example, some students made a minor calculation error. Some

others carelessly put the total number of cups sold in four weeks as the answer. Although

these fourteen students had incorrect answers, their solution processes suggested that

overall, they had a pretty good understanding of the average concept.

Ten percent (10%) of the students violated the "stopping rule" when they used a trial-

and error strategy. For example, one student first guessed that Week 4 sold 8 cups, then he

added 9, 3, 6 and 8 up, got 26. When he divided 26 by 4, he got quotient 6 and remainder 2.

Then he tried number 11, 9 + 3 + 6 + 11 = 29, and 29 + 4 = 7 with remainder 1. The

quotient is 7, so he stopped trial and put 11 as the answer. However, he ignored the

remainder of 1. Like in this example, the student appeared to know the algorithm for

calculating the average, but he did not have clear idea when the guess-and-checking should

stop. Error analysis indicated that over one half of the students who did not have the correct

answer showed evidence that they knew the computational algorithm of calculating average.

About a quarter of the students simply add up some numerals given in the problem,

then put the sum in the answer space. Those student responses show evidence that they did

not understand the average concept, even the problem at all.

Solution strategy. Strategies are goal-directed, mental operations that are aimed at

solving a problem (Simon, 1989). Appropriate use of strategies is essential to successful

problem solving. Three solution strategies were identified, which are described below:

Strategy 1 (Leveling): The student used visualization to solve the problem. Generally,
students viewed the average (7) as a leveling basis to "line up" the numbers of cups
sold in the week 1, 2, and 3. Since 9 cups were sold in week 1, it has two extra cups.
Since 3 cups were sold in week 2, additional 4 cups are needed in order to line up the
average. Since 6 cups were sold in week 3, it needs 1 additional cups to line up the
average. In order to line up the average number of cups sold over four weeks, 10 cups
should be sold in week 4.

Strategy 2 (Using Average Formula): The student used the average formula to solve the
problem arithmetically (e.g., 7 X 4 (9 + 3 + 6) = 10 or algebraically (e.g., (9 + 3 + 6 +
x) = 7 X 4, then solve for x).

Strategy 3 (Trial-and-error): The student first chose a number for week 4, then checked if the
average of the numbers of cups sold for the four weeks was 7. If the average was not
7, then they chose another number for the week 4 and checked again, until the average
was 7.

More than a half of the students (130 out of 250 or 52%) had an clear indication of usingone

of the above strategies. Within those who had clear indication of using one of the above

strategies, the strategy 2 (using average formula) was the most frequently used and the

leveling strategy was the least frequently used. In particular, 59% (77 out of 130) of them

used average formula to solve the problem, 35% (45 out of 130) used trial-and-error

strategy, and the remaining 6% (8 out of 130) used leveling strategy.
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Representation. Every student who provided an explanation was subject to

examination of their representations. This included 244 (98%) students' responses. The

representation was examined according to the way students represented their solutions

(Janvier, 1987). Four categories were used to classify the representation: verbal, pictorial,

arithmetic, and algebraic. If a student mainly used written words to explain how he/she

found the answer, then the response was coded as a verbal representation. If a student

mainly used a picture or drawing to explain how he/she found the answer, then the response

was coded as a pictorial representation. If a student mainly used arithmetic expressions to

explain how he/she found the answer, then the response was coded as an arithmetic

representation. If a student mainly used algebraic expressions to explain how he/she found

the answer, then the response was coded as an algebraic representation.

Two-thirds of the students used the arithmetic representation, but only 2% of the

students used the algebraic representation. A quarter of the students used verbal/written

words to represent their solutions. Nearly 10% of the students used the pictorial

representation to explain how they found their answer.

Since symbolic representations, especially the algebraic symbolic representation are

more abstract than verbal and visual representations, it is reasonable to hypothesize that

students who used symbolic representations performed at a higher level than those who used

verbal and visual representations because of the abstract nature of mathematics. In the

remaining of this section, how students' performance is related to their use of representations

are examined.
The open-ended average task was administered with other six open-ended tasks, so

students' performance' on those six open-ended tasks were used as their performance

measure to examine the relationships between performance level and the use of

representations. As shown in Table 2, the students who used an algebraic representation had

the highest mean score, those used arithmetic representation the second highest, those used

visual representation the third, and those used verbal representation the last. An analysis of

variance (ANOVA), shown in Table 3, suggested that there were statistically significant

differences among students who used various representations (E(3, 240) = 4.19, 2 < .01).

Post hoc analysis showed that the students with the algebraic representation performed

significantly better than those who used the arithmetic representation (I = 2.65, p < .05), than

those who used the visual representation (t = 3.47, a < .01), and than those who used the

verbal representation (t = 3.80, 2 < .01). The significant differences also existed between the

students who used arithmetic symbolic representation and those who used visual

representation (t = 2.48, g < .01), and between the students who used arithmetic symbolic

1 Each response to the six open-ended tasks was scored according to a holistic scoring scheme, ranging from 0
- 4. The maximum score on the six open-ended tasks is 24. The detailed description of the holistic scoring
can be found in Lane (1993) and Silver & Lane (1993).
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representation and those who used verbal representation (t = 2.96, g < .01). There was no

significant difference between students who used visual representation and those who used

verbal representation.

Table 2. Students' Mean Scores on Solving Six Open-ended Problems

Representation Algebraic Arithmetic Visual Verbal
(n=5) (n=161) (n=16) (n=62)

Means 19.20 17.03 14.19 13.61

Table 3. Summary of the ANOVA Analysis for Students' Performance

Source DF Sum of Squares Mean Squares F-value Pr > F

Model 3 157.47 52.49 4.19 .01

Error 240 3005.52 12.52

Relatedness on Performing Two Average Tasks

Table 4 shows the results of students' correctness of answers on the two average

tasks. A chi-square analysis indicated a significant difference between the two tasks with
respect to the distribution of students with the correct answer or incorrect answer, x2 (1, =

250) = 14.08, 2 < .005). In particular, although nearly 90% of the students who had the

correct answer for the multiple-choice average task, only 50% of them had the correct

answer for the open-ended average task. In fact, 40% of the students had the correct answer

for the multiple-choice task, but an incorrect answer for the open-ended average task. One-

tenth of the sample had both answers wrong. Interestingly, a few students had the correct

answer for the open-ended task, but an incorrect answer for the multiple-choice one.

Table 4. Distribution of Students' Correct and Incorrect Answers in the Two Tasks

Multiple-choice Average Task
Correct
Alawer

Incorrect
r6..isver

Correct 120 5
Open-ended Answer (48%) (2%)

Average
Tasks Incorrect 101 24

Answer (40%) (10%1

DISCUSSION

This study examined a group of 250 sixth-grade students' performance on solving

two"average tasks. The results of this study suggest that a majority of the students knew the

"add-them-all-up-and-divide" algorithm of calculating average. In fact, nearly 90% of the

students selected the correct operations when they were asked to choose appropriate
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operations for calculating the average of five scores. However, only about a half of the

students showed evidence of having a conceptual understanding of the concept.

Error analysis of students' responses to the open-ended average task suggested that a

fairly large proportion of the students attempted to use the average algorithm directly to

solve the problem, as used in calculating a simple mean. Obviously, students cannot use the

average formula directly in order to solve the open-ended average problem, instead, they

should "reversibly" use the average algorithm. Such "reversibility" of using the average

formula exhibited a deep understanding of the average concept and a flexible application of

the concept in the problem situation.

In addition to the error analysis, students' solution strategies and representations were

also examined. In particular, the results of this study showed that students used different

solution strategies and used various representations to show their solution processes. The

results of this study showed that the use of solution strategies and representations reflected

the level of students' mathematical problem-solving performance (Janvier, 1987). Higher

performers tended to use more abstract representations than the lower performers. The

students who used an algebraic representation performed better than those who used others.

The analysis of students' solution strategies, errors, and representations was possible because

of using the open-ended type of task. This study suggest the value of using the open-ended

task to capture students' misconceptions of average concept and problem-solving processes.

Shaughnessy (1992) indicated that most students' understanding of the average

concept was the "add-them-all-up-and-divide" algorithm, because the computational

procedure was all they were ever taught. This study not only suggested that most students'

understanding of the average concept is only the computational algorithm, but also

suggested the need for teaching the average concept beyond the computational algorithm.

For example, the average concept may be introduced as that "the average of two or more

numbers is related to the process of EVENING OFF of columns of cubes" (Bennett, Maier,

& Nelson, 1988), before the formal algorithm is taught. The height of the evened off

columns is the AVERAGE of these original columns. The emphasis should be on

"averaging" rather than on "average" and averaging is the evening-off process.

Teachers may provide students opportunities to solve various types of average

problems, such as the "weighted average problems" and the ones like used in this study so

that students will experience the application of the average concept in various situations. It

is not enough for students to obtain a correct answer; importantly, they should be asked to

explain their thinking and reasoning. Hence, they will experience the conceptual aspect of

the concept beyond the computational algorithm. Given the importance of the average

concept in statistics and daily life, it is necessary to explore the effective ways of teaching

the average concept with conceptual understanding in future mathematics education

research.
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Multiple-choice Average Task

Which operations should you carry
out to solve this problem?

On five tests in your math class your
scores are 98, 63, 72, 86, and 1(10.
What is your average score?

a.
b.
c.
d.

add, then multiply
add, then divide
divide only
multiply, then subtract

Figure 1. Average Tasks

Open-ended Average Task2

Angela is selling cups for the Mathematics Cluh.
This picture shows the number of cups Angela
sold during the first three weeks.

Week i EDDOODDC}D
Week 2 D DD
Week 3 DDDDDD
Week 4 9

How many cups must Angela sell in Week 4
so that the average number of cups sold is 7?
Show how you found your answer.
Answer:

2 This task was adapted from QUASAR project. For reasons of confidentiality, the context and numbers
embedded in the problem were modified, but the mathematical structure is identical. For more information
about the QUASAR project, please write to Dr. Edward Silver, LRDC, University of Pittsburgh, Pittsburgh,
PA, 15260, USA.
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LEARNING PROBABILITY THROUGH BUILDING COMPUTATIONAL MODELS

Uri Wilenskv

Tufts University

Abstract
While important efforts have been undertaken to advancing understanding of probability using

technology, the research herein reported is distinct in its focus on model building by learners. The
work draws on theories of Constructionism and Connected Mathematics. The research builds from
the conjecture that both the learner's own sense making and the cognitive researchers' investigations
of this sense-making are best advanced by having the learner build computational models of
probabilistic phenomena. Through building these models, learners come to make sense of core
concepts in probability. Through studying this model building process, and what learners do with
their models, researchers can better understand the development of probabilistic learning. This report
briefly describes two case studies of learners engaged in building computational models of
probabilistic phenomena.

Introduction
In the Connected Probability project (Wilensky, 1993; 1994), we explore ways for learners

(both secondary and post-secondary) to develop intuitive conceptions of core probabilistic concepts.

Computational technology can play an important role in enabling learners to build intuitive
conceptions of probability. Through building computational models of everyday and scientific

phenomena, learners can build mental models of the underlying probability and statistics. Even

learners not usually considered good at mathematics and science can build models that demonstrate a

qualitatively greater level of mathematical achievement than is usually found in mathematics

classrooms. "Emergent phenomena", in which global patterns emerge from local interactions, are

authentic contexts for learners to build with probabilistic parts. By giving probabilistic behavior to

distributed computational agents, stable structures can emerge. Thus, instead of learning probability

through solving decontextualized combinatoric formulae or being consumers of someone else's black

box simulations, learners can participate in constructionist activities - they design and build with

probability.
As part of the Connected Probability project, we have extended the Starlogo parallelmodeling

language (Resnick, 1992; Wilensky, 1993) and tailored it for building probabilistic models. The

Starlogo language is an extension of the computer language Logo that allows learners to control

thousands of screen "turtles". These turtles or computational agents have local state and can be

manipulated as concrete objects. Through assigning thousands of such turtles probabilistic rules,

learners pursue both forwards and backwards modeling. Forwards modeling involves exploring the

effects of various sets of local rules to see what global pattern emerges, while in backwards modeling

learners try to find an adequate set of local rules to produce a particular global effect. In this report,

two case studies of probabilistic modeling projects are presented.
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Theoretical Framework: Constructionism and Connected Mathematics
This research is organized and structured by a theory of Connected Mathematics (Wilensky,

1993). Connected Mathematics responds to a prevailing view that mathematics must be seen as
"received" or "given" and graspable only in terms of formalism per se.

Connected Mathematics is situated in the constructionist learning paradigm (Papert, 1991).

The Constructionist position advances the claim that a particularly felicitous way to build strong

mental models is to produce physical or computational constructs which can be manipulated and

debugged by the learner. As described by Wilensky (1993), Connected Mathematics also draws from

many sources in the mathematics reform movement (e.g., Confrey, 1993; Dubinsky & Leron, 1993;

Feurzeig, 1989; Hoy les & Noss, 1992; Lampert, 1990; Schwartz, 1989; Thurston, 1994).

A Connected Mathematics learning environment focuses on learner-owned investigative

activities followed by reflection. Thus, there is a rejection of the mathematical "litany" of definition-

theorem-proof and an eschewal of mathematical concepts given by formal definitions. Mathematical

concepts are multiply represented (Kaput, 1989; Mason, 1987; von Glaserfeld, 1987) and the focus is

on learners designing their own representations. Learners are supported in developing their
mathematical intuitions (Wilensky, 1993) and building concrete relationships (Wilensky, 1991) with

mathematical objects. Mathematics is seen to be a kind of sense-making (e.g., Schoenfeld, 1991)

both individually and as a social negotiation (e.g., Ball, 1990; Lampert, 1990). In contrast to the

isolation of mathematics in the traditional curriculum, it calls for many more connections between

mathematics and the world at large as well as between different mathematical domains (e.g., Cuoco &

Goldenberg, 1992; Wilensky, 1993).

The Role of Technology
The idea that mathematics is not simply received and formal implies a vision for how

technology can be used. Not to simply animate received truth (e.g., by running black-box
simulations) but instead as a medium for the design of models by learners. Under a traditional

formalistic framework, mathematics is "given" and technology is seen as simply animating what is

already known. In Connected Mathematics, knowing is situated and technology provides an
environment in which understanding can develop. Learners literally construct an environment in

which they then construct their understanding.

Because, when learners build computational models, they articulate their conceptual models

through their design, researchers can gain access to these conceptual models (see e.g., Collins &

'Brown, 1985; Pea, 1985). The researcher is given insight into the thinking of the learner at two

levels: as model builder and as model consumer.

Building Models vs. Running Simulations
Computer based simulations of complex phenomena are becoming increasingly common (see

e.g., Rucker, 1993; Stanley, 1989; Wright, 1992a, 1992b). In a simulation, the learner is presented
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with and explores a sophisticated model ( built by an expert) of a subject domain. The user can adjust

various parameters of the model and explore the consequences of these changes. The ability to run

simulations (or pre-built models) interactively is a vast improvement over static textbook-based

learning with its emphasis on formulae and the manipulation of mathematical tokens. Stanley (e.g.,

Shore et al, 1992) has demonstrated that curricular materials based on simulations of probabilistic

phenomena can be very engaging to secondary students and teachers. But, in simulations, generally,

learners do not have access to the woikings of the model. Without access to the underlying structures,

learners may perceive the model in a way quite at variance with the designer's intentions.

Furthermore, learners cannot explore the implications of changing these structures. Consequently,

their ability to develop robust mental models of these structures is inhibited. A central conjecture of

this research is that for learners to make powerful use of models, they must first build their own

models and design their own investigations. It is only by exploring the "space" of possible models of

the domain that learners come to appreciate the power of a good model. To support users in building

useful models, a number of powerful modeling environments have been designed. (e.g., STELLA

Richmond & Peterson, 1990, Roberts, 1978; Starlogo - Resnick, 1992; Wilensky, 1993; Agentsheets

- Repenning, 1993; KidSim - Smith, Cypher & Spohrer, 1994).

Extensible models
In the spirit of Eisenberg's use of "extensible applications" (Eisenberg, 1991) extensible

models are pre-built models or simulations that are embedded in a general purpose modeling

language. This combined approach has many of the advantages of both simulation and model

building: there is a rich domain model to be investigated, access is given to the structure of the model,

users can modify this structure, and even use it as a basis for building their own models and tools.

The challenge for such an approach is to design the right middle level of primitives so that

they are neither (a) too low-level, so that the extensible model becomes identical to its underlying

modeling language, nor (b) too high-level, so that the application turns into an exercise of running a

small set of pre-conceived experiments.

Probability
The domain of probability (and statistics) has been an ongoing focus of research within the

Connected Mathematics program. There are many reasons to recommend probability as a content

domain. Among these are:

There is a considerable literature attesting to the difficulty people have with understanding

probability (e.g., Kahneman & Tversky, 1982, Nisbett et al, 1983, Konold, 1991). Standard

instruction has been shown to provide little remedy. Educators have responded to this research by

advising students not to trust their intuitions when it comes to probability and to rely solely on the

manipulation of formalisms. As a result, learners construct brittle formal models of the core

probabilistic concepts and fail to link them to everyday knowledge. Connected Mathematics provides
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an alternative to this formalistic stance. It asserts that powerful probabilistic intuitions can be

constructed by learners (Wilensky, 1993; 1994; forthcoming;. By taking up such a challenging
domain, a strong proof of the value of Connected Mathematics can be demonstrated.

Computational environments can open doors to new ways of thinking about probability.
Computational environments allow users to construct stable products (e.g., normal distributions, see

below) using random components. This construction would be very difficult to do without
computational environments. From a constructionist perspective, this ability to build meaningful

products from random components is a prerequisite for making sense of the core notion of
randomness.

Particularly in the area of probability and statistics, the educational. goal should emphasize

interpreting (and designing) statistics from science and life rather than mastery of curricular materials.

In order to make sense of scientific studies, it is not sufficient to be able to verify the stated model;

one needs to see why those models are superior to alternative models. In order to understand a

newspaper statistic, one must be able to reason about the underlying model used to create that statistic

and evaluate its plausibility. For these purposes, building probabilistic and statistical models is

essential.

Many everyday phenomena exhibit emergent behavior: the growth of a snowflake crystal, the

perimeter pattern of a maple leaf, the advent of a summer squall, the dynamics of the Dow Jones or of

a fourth grade classroom. These are all systems which can be modeled as composed of many

distributed but interacting parts. They all exhibit non-linear or emergent qualities which place them

well beyond the scope of current K-12 mathematics curricula. Yet, through computational modeling,

especially with parallel languages such as Starlogo, pre-college learners can gain mathematical

purchase on these phenomena. Modeling these everyday complex systems can therefore be a

motivating and engaging entry point into the world of probability and statistics.

The Case of Normal Distributions
As part of my efforts to create learning environments for probability, I have used a carefully

selected set of materials (consisting of newspaper clippings, probability puzzles and paradoxes, core

probability concepts and computational tools) to stimulate learners to pursue their own investigations

and design their own computational tools for pursuing their inquiry.

One such example is Alan, a student with a strong mathematical background who nevertheless

felt that he "just didn't get" normal distributions. Using a version of the parallel modeling language

Starlogo which was enhanced for focusing on probability investigations ( Wilensky, 1993; 1994),

Alan developed a model for explaining his question, "Why is height (in men) normally distributed?"

Alan's theory was that perhaps "Adam" had children which were either taller or shorter than him with

a certain probability. If this process was repeated with the children, then a distribution of heights
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would emerge. To explore what kinds of distributions were possible from this model, Alan built a

"rabbit jumping" microworld. Taking advantage of the parallel modeling environment, Alan placed

sixteen thousand rabbits in the middle of a computer screen. He then gave each rabbit a probabilistic

jumping rule. (In Alan's model, the location of the rabbit corresponds to a person's height and a jump

corresponds to a set deviation in height). The first such rule he explored was to tell each rabbit to

jump left one step or right one step each with probability 1/2. After a number of steps, the classic
symmetric binomial distribution became apparent. Alan was pleased with that outcome but then asked

himself the question: what rule should I give the rabbits in order to get a non-symmetric distribution?

His first attempt was to have the rabbits jump two steps to the right or one step to the left with equal-

probability. He reasoned that the rabbits would then be jumping more to the right so the distribution

should be skewed right. His surprise was evident when the distribution stayed symmetric while

moving to the right. It didn't take too long though before he realized that it was the different sized

probabilities not the different sized steps that made the distribution asymmetric. This example, while

seemingly elementary, captures many facets of the model building approach to learning about

complexity:

The question was owned by the learner

Theories were instantiable and testable

Buggy theories could be successively refined

The modeling environment did not limit the directions of inquiry

The environment provides a suitable set of syntactic primitives so that his model was easily built. It

provided a suitable set of conceptual primitives that guided Alan's investigation. In particular the

parallelism of the modeling environment puts a focus on the relationship between micro- and macro-

aspects of the problem. Typically, distributions are learned and Classified by their macro- features

(e.g., mean, standard deviation, variance, skew, moments) but the realization that distributions are

emergent effects of numerous micro-level interactions is lost. This is a key point since I) the concept

of distribution is central to probability and statistics and 2) this failure to connect levels makes

distributions seem like formal received mathematics, mathematics to be memorized and understood

solely through formulae. In contrast, Alan constructs distributions and is able to link their macro-

properties to the micro- rules he has given them.

GPCEE - The Case of the Gas in a Box
Harry is a science and mathematics teacher in the Boston public schools. He was very

interested in the behavior of gas particles in a closed box. He remembered from school that the

energies of the particles when graphed formed a stable distribution called a Maxwell-Boltzman

distribution. Yet, he didn't have any intuitive sense of why they might form this stable asymmetric

distribution. He decided to build a model of gas particles in-a box using the Starlogo modeling

language.
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The model Harry built is initialized to display a box with a specified number of gas
"molecules" randomly distributed inside it. The user can then perform "experiments" with the

molecules.

The molecules are initialized to be of equal mass and start at the same speed (that is distance

traveled in one clock tick) but at random headings. Using simple collision relations, Harry was able

to model elastic collisions between gas molecules, (i.e., no energy is "lost" from the system). The

model can be run for as many ticks as wanted.

By using several output displays such as color coding particles by their speed or providing

dynamic histograms of particle speeds/energies, Harry was able to gain an intuitive understanding of

the stability and asymmetry of the Boltzman distribution.

Harry's story is told in greater detail elsewhere (Wilensky, forthcoming). (Originally, Harry

had thought that because gas particles collided with each other randomly, they would be just as likely

to speed up as to slow down. But now, Harry saw things from the perspective of the whole ensemble

of particles. He saw that high velocity particles would "steal lots of energy" from the ensemble. The

amount they stole would be proportional to the square of their speed. It then followed that, since the

energy had to stay constant, there had to be many more slow particles to balance the fast ones.

This new insight gave Harry a new perspective on his original question. He understood why

the Boltzrnan distribution he had memorized in school had to be asymmetric. But it had answered his

question only at the level of the ensemble. What was going on at the level of individual collisions?.

Why were collisions more likely to lead to slow particles than fast ones? This led Harry to conduct

further productive investigations into the connection between the micro- and macro- views of the

particle ensemble.

GPCEE as an Extensible Model
Harry's story is not the end of the tale. Harry collaborated with me in making his model into

an extensible application. We call the model GPCEE (Gas Particle Collision Exploration
Environment). Once GPCEE became a publicly accessible model, we were struck by its capacity to

attract, captivate and engage "random" passers-by. People.whose idea of fun did not include working

out physics equations nonetheless were mesmerized by the motion of the shifting gases, their pattern

and colors. And they were motivated to ask questions - why do more of them seem to slow down

than speed up? What would happen if they were all released in the center? in the corner?

As a result, many more learners used the GPCEE model and, since it was an extensible
model, they extended it. Among the extensions that users built were tools for measuring pressure in

the box and viscosity of the gas, pistons to compress the gas, different shapes for the container,
different dimensional spaces for the box, diffusion of two gases, different geometries for the
molecules (e.g., diatomic molecules with rotational and vibrational freedom), and sound wave

propagation in the gas. In order to build the computational tools for these extensions, users had to

build conceptual models. They came to ask such questions as: What kind of thing is pressure? How

would you build a tool to measure it?
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It is clear that GPCEE is both a physics simulation, one in which experiments difficult or

impossible to do with real gases can be easily tried out, and an environment for strengthening

intuitions about the statistical properties of ensembles of interacting elements. Through creating

experiments in GPCEE, learners can get a feel for both the macro- level, the behavior of the ensemble

as an aggregate, and its connections to the micro- level what is happening at the level of the
individual gas molecule. In the GPCEE application, learners can visualize ensemble behavior all at

once, sometimes obviating summary statistics. Furthermore, they can create their own statistical

measures and see what results they give at both the micro- and the macro- level. They may, for

example, observe that the average speed of the particles is not constant and search for a statistical

measure which is invariant. In so doing, they may construct their own concept of energy. Their

energy concept, for which they may develop a formula different than the formula common in physics

texts, will not be an unmotivated formula the epistemological status of which is naggingly questioned

in the background. Rather, it will be personally meaningful, having been purposefully designed by

the learner.

The necessity of creating his own summary statistic led one learner to shift his view of the

concept of "average". In the GPCEE context, he now saw "average" as just another method for

summarizing the behavior of an ensemble. Different averages are convenient for different purposes.

Each has certain advantages and disadvantages, certain features which it summarizes well and others

that if doesn't. Which average we choose or construct depends on what about the data is important to

us. (how we wish to make sense of the data

Having shown the GPCEE environment to quite a few professional physicists, I can attest to

the fact that although they knevi that particle speeds fell into a Maxwell-Boltzman distribution, most

were still surprised to see more blue particles than red they had formal knowledge of the

distribution, but the knowledge was not well connected to their intuitive conceptions of the model In a

typical physics classroom, learners have access either only to the micro level through , say, exact

calculation of the trajectories of two colliding particles, or only to the macro- level, but in terms of

pre - defined summary statistics selected by the physics canon. Based on this example, it would seem

that it is in the interplay of these two levels of description that powerful explanations and intuitions

develop.
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Abstract
An experiment conducted with students of different academic levels (l3 to 17 year olds),
concerning different types of problems in algebra, brings evidence to the implicit criteria
which lead students towards an engagement in problems in one or several unknowns. The
analysis also brings out the differences between the two types of reasoning from the point
of view of management of the relations in the problem and what they require of the student.
The results of this experiment unite with the epistemological analysis of the construction of
algebraic knowledge in the context of problem solving.

1-Introduction

This work is part of an ongoing research project' which aims at better
understanding the conceptual base which underlies the student's construction of algebraic

knowledge. In being interested in the continuities and discontinuities which one can locate

in the reasoning used by the students (Bednarz et al. 1992-a, 1992-b, in press), our
research program makes a close study of the nature of problems generally presented in
algebra and leads us to elaborate a grid of analysis in terms of relational calculations

(Vergnaud, 1982), which enables us to keep track of the relative complexity of the
problems and to understand and anticipate certain difficulties observed with the students

(Bednarz & Janvier, 1994). This grid forms an essential basis to analyse procedures used

by students and problems capable of favoring the emergence and development of algebraic

reasoning. The work which we present here aims exactly at analyzing this question at the

level of the passage from the reasonings based on algebra of one unknown ( or several

unknowns) to that based on algebra of several unknowns ( or one unknown ).

2-From algebra in one unknown to algebra in several unknowns
The use of algebra in several unknowns usually comes into the school curriculum in

tenth grade (15 to 16 years old): after two years of introduction to algebra which favors, in

the context of problem solving, the resolution in one unknown.This gradation rests on

certain presumptions, linked above all to the solution tool, which is the equation, guiding

the choice of problems given to students in different academic levels, and in particular the

I Research supported by a grant from the Research Council of Human Sciences of Canada, FCAR, Quebec
and FRUL, Ontario.
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choice of the initial problem which forces the student to a resolution in one unknown2 .

The results of experiments conducted with students in different academic levels, concerning

different types of problems, questions this a priori gradation based on the equation, and

questions the relevance of this hierarchy proposed in learning between resolution in one

unknown and resolution in several unknowns (Bednarz & Janvier, 1994).

The study of the passage from one type of reasoning to the other in problem solving

has recently been approached by Radford (1994) in light of the changes which are required

in the system of mathematical knowledge associated with several unknowns, Sn, in

comparison with the system of knowledge associated with one unknown, SI, each of these

systems being characterized by their own concepts, their problems to solve and their

specific solution methods. The comparison of solution procedures for one or several

unknowns, in relation to certain specific problems, allows showing certain profound

changes implemented at the level of solution methods in the passage from one way of

reasoning to another. Indeed in system Si, to be able to express the many unknown

quantities to which the situation makes reference in terms of only one unknown, the

students must transform the problem, and this transformation is a source of difficulties

(Radford, 1994, p. 79). On the other hand, in the solution methods used in Si, the

relationships between quantities do not have an interchangeable role, therefore it is

necessary for the students, if such relationships and their sequence are not directly

formulated, to anticipate a hierarchy in the relations and to choose the order in which the

relations will be used. In contrast, in Sn the management of relations happens otherwise:

the insertion of several unknowns avoids the transformation of the problem for the

students, but using several equations will raise other difficulties (cf op. cit., p. 77).

Difficulties appear, at least in the sample considered, in conferring a real algebraic status to

each of the unknowns, the students limit to using these as descriptive elements of the

relations of the problem without giving them an operational mobility (cf example 5, op.

cit., p. 77).

This work seems to suggest, in relation to certain problems, that the solution

procedures in Si are more difficult for the student than those in Sn from the point of view

of the management of the relations. However at the same time this first exploration shows

a certain resistance on the part of the students in the passage to Sn. In order to better

understand the difficulties linked to each of these modes of reasoning,we propose, in this

work, to further push the study of solution procedures used by students in different

2 It could be wothwhilc to keep in mind that the algebraic concepts of unknown and variable are logical and
epistemplogical differents ( for a deep discussion about the radical differences of both concepts, see Radford,
forthcoming I and 2 ).We will deal here with the concept of algebraic unknown only.
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academic levels with regard to problems presenting different relational structures (Bednarz,

Janvier, 1994 ). More specifically, our objectives are the following:

to further characterize the elements of the problems (structure of the problem, nature of the

relations, linking of these relations, nature of the data ... ) capable of further favoring the

emergence and the use of algebraic procedures in several unknowns or one unknown.We

wish to try to distinguish, from the relational structure of a problem (Bednarz & Janvier,

1994), implicit criteria used by the students which allows them to identify a problem given

in one or several unknowns. This work is based on an analysis of problems and of

procedures, and has been conducted with a double perspective, historico-epistemological

and didactical. This analysis will allow us to shed light on alternating situations to the usual

gradation one unknown- several unknowns proposed in teaching .

3-Some epistemological considerations
The history of mathematics shows us that during a long time solution methods

remained based on a reasoning of only one unknown: this is the case of the methods of

single and double false position (Radford, 1994). This is the case of algebra according to

Diophantus, but it is also the case in mediaeval mathematics.Thus the historical record

suggests that the second unknown is a late concept in the development of algebraic ideas.

To our knowledge, it is found for the first time in the "extrait du Faldur by Aboll Bekr

Alkarkhl, written at the beginning of the 11th century in Bagdad (Woepcke, trad. 1853),

and later in the 14th century, in the Trattato di Fioretti d'Antonio de Mazzinghi (ed. Arrighi,

1967), where it is designated by the term "quantita", the first unknown having been

designated by the "cosa". An important thing to say in relation to the second unknown in

the works cited is that it serves to make problem solving simpler. Mazzinghi, for example,

uses it for the first time in problem 9 of the Trattato:" Find two numbers so that when we

multiply them it makes 8 and so that the sum of their squares is 27 ", a problem which he

already knows how to solve ( he gives two other solutions, one of which is geometric, cf.

op. cit, p. 28-29). The "quantita", or second unknown ( and the "cosa", first unknown )

never serve to translate the wording of a problem, as one does in the algebra taught in

school today, but to find a quasi-symbolic expression for the numbers sought for .Thus, in

problem 9, Mazzinghi represents the numbers sought for by "la cosa plus la racine de la

quantita" and the "cosa moms la racine de la quantita". The second unknown thus appears

as having a purely heuristic role: its finality is that of procuring an alternative method of

resolution, more direct and general (which is likely the case of the first unknown whose

emergence procured a shorter and more direct method in comparison to the Babylonian
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methods of false position ( cf. Radford, forthcoming ).We find for the second unknown

what we found for the first one.

The second unknown thus appeared as a new object hierarchically subjugated to the

first unknown. At the beginning it does not have a life of its own.Thus Mazzinghi

introduces the "quantita" at the beginning of problem solving, but the calculations were

conducted so as to get rid of the "quantita° and to find an equation in terms of the first

unknown. It is only much later that the two unknowns acquired the same role: beginning

with the first problems, Stifel in his Aridunetica Integra (1554) strove to show that the

second unknown could have the same role as the first unknown. In his work in particular,

one finds solution procedures which lead to equations including uniquely the second

unknown, the first having been eliminated at the beginning of the calculations.

Let us remark finally that the historical analysis suggests that the structure of the

problems in which the second unknown emerges are problems where the second unknown

is not expressed directly in terms of the first unknown.These are the problems which do

not lead to relations of the type "y=g(x)", which is the case of relations of comparison such

as " the amount of a person is 3 times the amount of the other ", but which lead to relations

of the type "f(x,y)", which is the case in particular of relations of sums such as these

involved in the problem 9 of Mazzinghi.

4-The experimental study
We saw briefly how reasonings evolved and to what kind of problems this

evolution was articulated. It is on this structure of the problems that the experimental study

will make the link with the historical study.

In order to better understand the type of problems capable of favoring an eventual

engagement of several unknowns, and the differences for the students between the

reasonings of one unknown versus several unknowns thus involved, different problems

were considered for the purpose of experimentation, based on the grid previously

developed by the team (Bednarz & Janvier, 1994). We considered three types of problems.

- problems of unequal partitioning (in which a known whole is distributed in

many parts), such problems being generally presented at the time of the introduction to

algebra3 , and which bring into play relations of comparison, g(x)=y, between unknown

quantities, such as the following problem: The three daughters of Mr. Beaulieu together

received $181 for their work. Marie received $37 more than Pattie, and Danielle received

$14 more than Marie.How much did each receive? " (Problem a ).

3 These problems are generally considered by their authors as problems of one unknown.
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We have varied certain elements within this class of problems which are capable of

affecting the engagement of the student in these problems and their solution ( Bednarz &

Janvier, 1994 ). We will return more specifically to certain of these elements which concern

us here at the time of the analysis.

problems only bringing into play relations of sums, f(Z,y)=a, such as the

following problem: "The three daughters of Mr. Beaulieu received $181 for their work.

The difference between the amounts of money that Nadine and Diane received is $37 and

the difference between the amounts of money that Francoise and Nadine received is $14.

How much did each receive?" (problem b).

- problems bringing into play transformations of quantities, such as the
following: 'Together Luc and Michel have $11.90. Luc doubles his amount of money

while Michel increases his by $1.10. Now together they have $17.20. How much did

each have at the beginning?' (problem c). This third class allows us, by changing the

nature of the relations between quantities before and after transformation , g(x)=y or

f(x,y)=a, to see the influence of the nature of relations in an another type of problems..

These problems were experimented with students from different academic levels (2

groups per level), for secondary 2 and 3 (13 to 15 year olds) at the moment of introduction

to algebra in one unknown in the academic curriculum, for secondary 4 and 5 (16 to 17

year olds) at the moment of and after introduction to algebra in several unknowns in the

curriculum.

5-Analysis of results
-With certain problems the students used solution procedures which are removed

from those favored by the school curriculum. Thus in secondary 2 and 3, certain problems

(fig. 1 and 2) are going to even more likely be perceived by the students as problems with

several unknowns, which will be shown by a writing and a working out in terms of several

unknowns (XS), or by recourse to a procedure of the type "false one unknown" (F1), as in

the following example ( problem d, figure 1: three children play marbles. They have all

together 198 marbles. Pierre has 6 times more marbles than Denis and 3 times more

marbles than George. How much marbles did each child has ?

Pierre: 3x+6x

Denis: x

George: x 3x+6x+x+x=198

In this latter case, the student sees two unknowns, but not having the tools for operating,

will use the letter x to refer to two different magnitudes which will be treated
independently.On the opposite, certain problems are going to evoke in the students from
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secondary 4 and 5 solution procedures in one unknown, which will be manifested by a

direct writing in terms of one unknown (XI ) or by recourse to a procedure of the type

"false several unknowns"(FX) (the student writes several variables as the school demands,

but he thinks, as seen in his solution, in terms of only one ). Thus, in the following

example (problem a) the student conceives the problem in one unknown:

Paule: p Marie: m+37 Danielle: d+37+14

p+m+37+d+37+14=181

(if the m and the d are replaced by p, we have indeed an equation in one unknown).

- The analysis of the reasoning profiles used by the students at different academic

levels in each of the problems allows one to bring into evidence the implicit criteria which

guides the students in their engagement towards a procedure in one unknown or several

unknowns:

The nature of the relations between the unknown quantities and their linking appear

to be determinants here. Thus the problems of unequal partitioning (cf fig. 1) bring into

play, according to the grid developed by Bednaa & Janvier (1994), a sequence of relations

of "well type" (such as problem d) which, more than those in which the quantities are

generated directly from the same quantity (such as problem e :" three chidren play marbles.

They have all together 198 marbles. Pierre has 6 times more marbles than Denis and

George has 2 times more marbles than Denis. How many marbles did each child has?" and

problem f : "....George has 2 times more marbles than Denis and Pierre has 3 times more

marbles than George..."), evoke at all levels an engaging of several unknowns.

Figure 1: Patterns of reasonings to problems d, e, f.
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In the same way problems bringing into play the relations of the type sum or

difference (fig. 2) between unknown magnitudes f(x,y) (such as problems b or c) evoke

more of an engagement in several unknowns on the part of the students than are brought

into play for the same type of problem with the relations of the type comparison (such as

problem a or the following: "Luc has $3.50 less than Michel. Luc doubles his amount of

money while Michel increases his by $1.10. Now together they have $17.20. How much

did each have at the beginning?" )

Figure 2: Patterns of reasonings to problems a and b.
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Figure 3: Performance to problems g and h.

Seat
(13-14 years old)

Sec. 3
(14-15 years old)

Sec. 4
(1546 years old)

Group A Group B Group A Group B

Problem h

Problem g
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24%
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32%
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(weak)

76%
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The referring of magnitudes appears to be another implicit criteria which will be a

determinant in the representation which the student will make of the problem, at the

moment of introduction to algebra. Thus the following problems do not al all evoke the

same type of reaction on the part of the students: "An inventory has been made of sporting

goods. In the second and third warehouses, 288 balls were counted. If there are 4 times

more balls in the second warehouse as in the first, and 7 times more balls in the third

warehouse than in the second, how many balls are,there in each warehouse?" (problem g,

in which the numbers refer to the same entity) and "Three kinds of sporting goods were

counted in a warehouse. When the snowshoes and hockey sticks were counted, the total

was 288. If there are 4 times more snowshoes than balls, and 7 times more hockey sticks

than snowshoes, how many of each type of sporting goods are there in the warehouse ?"

(problem h identical to the preceding, but in which however the numbers refer to different

entities). The second problem, further seen by the students as a problem in several

unknowns in which the common generator does not immediately appear for the students,
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will thus be much less successful than the first (figure 3). We can observe ici the same

tendancy at all grade levels and for all the groups.

Conclusion
Our results join the historical record in suggesting that the structure of problems in

which several unknowns emerge are problems which cannot be directly expressed in terms

of one unknown. Our results however give evidence here beyond of other implicit more

subtle criteria which guide the student in this engagement (sequence of relations, in the case

of problems bringing into play the relations of comparison, "refereqt of numbers

...).These results bring back into question the usual hierarchy which one finds in teaching

between resolution in one unknown and resolution in several unknowns and provides paths

for both a choice and a more appropriate gradation of problems..Our analysis of reasonings

show finally that for students the unknowns are always used to translate the problem.
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NEGOTIATING CONJECTURES WITHIN A MODELING APPROACH TO

UNDERSTANDING VECTOR QUANTITIES

Helen M Doerr
Cornell University

Abstract
Within a modeling-based curriculum, one small group of students developed a model of the vector relationships among
the multiple forces acting on an object moving at constant velocity on an inclined plane. This paper reports the analysis
of how that group interpreted the posed problem, generated and negotiated multiple conjectures, devised strategies for
analyzing the data, and coqfirmed their sense of various conjectures. The results of this classroom case study
illuminate the difficulties students encounter in representing and analyzing a vector quantity such as force. These
results provide evidence to support the grounding of student's analytic activities in physical phenomena, with particular
importance of the boundary conditions as sense-making points, while engaging students in a non-linear, cycliepattern
of interpreting, hypothesizing and confirming conjectures.

Introduction and Theoretical Framework

The usual definition or description of a vector is as a quantity having both magnitude and direct Physical

quantities such as displacement, force, velocity and acceleration ate ordinarily described as vector quantities. The

concept of force as a multi-dimensional, vector quantity is thus quite distinct from the more familiar scalar quantities

such as length and temperature. The measurement of physical quantities such as force and velocity, according to

Freudenthal (1993), requires three constitutive components: "a co ncept of equivalence, in order to assign the same

measure to equivalent objects, a way to compound objects which extends to the addition of their measures, [and) a unit

measure" (p. 77). Freudenthal argues that the equivalence relation for both force and velocity is translation. Thus,

velocity as a vector quantity can be freely moved along a linear translation, as in the horizontal velocity of projectile

motion. With forces, for example, translation along the line of action does not change the measurement of the force:

"the point where one pulls the cord does not matter" (Freudenthal, 1993, p. 80). Thus, linear translation defuses the

equivalence relation between any two forces. The measurement of a force also requires a compounding action that

allows for the addition of any two forces. Freudenthal claims that students must corroborate why vector addition

accounts for multiple forces acting at a point; this claim has been substantiated by other research (Doerr & Confrey,

1994).

In an earlier study with high school physics students on how impulse forces affect the speed of motion, White

(1983) found that the students did not use the formalism of vector diagrams to solve problems involving change in the

direction of motion. Rather than having a unified concept of vectors, the students used speed (or magnitude) and

direction independently. The geometric representation of a vector focused students' attention on the directionality of the

quantity, but may have left confusion as to what the length represents. Furthermore, the scalar rules of arithmetic do not

transfer to the addition of the magnitudes of vectors. Since understanding force and motion requires simultaneously

understanding both direction and magnitude, White concluded that the process of understanding force and motion as

vector quantities is complex. This suggests that when compounding vectors, as described by Freudenthal, students may

encounter difficulties in simultaneously grasping both the magnitude and direction of the vector quantities. In this

study, the students' understandings of both the equivalence relation and the compounding action on force vectors are

examined in a modeling curriculum that is centered on student construction of understanding through the interplay

between physical experimentation and the use of multi-representational analysis tools.

The problem-solving activities found in a typical mathematics or science classroom suggest a linear

relationship between physical phenomena, mental (conceptual) models, and mathematical representations. The
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mathematical representations are often unduly limited to the symbolic representations of algebra and the subsequent

manipulation of those symbols. Mathematical modeling is sometimes described as iterations of such a linear problem-

solving approach: understand the particular phenomenon to be modeled; define the context and constraints; identify the

key variables; explicitly define the relationships among the variables; translate those relationships to an appropriate

computer implementation; analyze and interpret the results; and then refine the model and one's understanding through

an iterative process by repeating the above steps (Edwards & Hansom, 1989).

In contrast, Lesh, Surber, and Zawojewski (1983) reject the linearity of the Polya-type problem-solving stages

that proceed in a uni- directional process from givens to goals. Based on their research in the Applied Mathematical

Problem Solving project, Lesh et al. (1983) argue for a non-linear progression through different phases of the modeling

process: interpretation, integration/differentiation, and verification. They note that in their study students spent an

overwhelming amount of time in the first phase, refining their understandings about the problem. They go on to argue

that these phases do not necessarily occur in any given order and that there is a mapping cycling that occurs within each

phase. These mapping cycles are the cognitive processes by which students map their perceptions to their cognitive

models, transforming their models and mapping back to the perceived problem situation. Thus, Lesh et al. (1983) posit

a "spiraling model evolution [that] is characterized by the occurrence of repeated mapping cycles while simultaneously

the qualitative level of understanding increases" (p. 132). Linn, diSessa, Pea, and Songer (1994) extend this notion by

arguing for a long-term perspective for the refinement and articulation of students' models as these models evolve into

more sophisticated forms.

In this paper, I will argue that the use of everyday materials and first-hand experience with objects strengthens

the connections among actions, concepts and representations (including graphical, tabular, geometric, and symbolic). In

contrast to those theories which argue for a uni-directional movement from concrete to abstract, this case study seeks to

elucidate the theory that student understanding is constructed through the dialectic between grounded activity and

systematic inquiry as put forth by Confrey (1993). In her theory, Confrey argues that mathematics evolves from actions

with concretematerials and that systematic inquiry stabilizes and extends the use of the mathematics. Such a continuing

dialectic provides a theoretical foundation for a non-linear modeling process and implies the examination and re-

examination of conjectures and representations. This study closely examines the students' actions with physical

materials, their generation of representations and hypotheses, and their further inquiry with those representations. This

paper presents an analysis of one small group's interactions as the students make their own concepts explicit,

hypothesize relationships, test their ideas, and ultimately develop a model for analyzing the role of friction in the motion

of objects on inclined planes.

Description of the Study

This study is part of a larger research project that investigated a modeling approach which integrates three

components: building representations and relationships from physical phenomena, exploring and extending conjectures

through a simulation environment, and developing and validating solutions through the iterative use of a multi-

representational analysis tool. The approach used by the students in this study alternated and cycled through these

activities. This larger study was designed to understand how these components are interrelated, to explore the extent to

which the components are effective in improving students' content knowledge about force, motion, and vectors, and to

learn how this modeling process can be used by students. This paper addressesa sub-unit examining the role of friction

on an inclined plane and shows how one group of four students devised strategies for analyzing the data, generated and
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negotiated conjectures, validated conjectures, generated new conjectures, and used the tools and empirical data.

Curricular Unit and Setting

The instructional approach to the unit is based on the notion of prcividing an essential question to motivate the

inquiry and guide the students. The overall essential question for this unit was: "How will an object behave if it is

traveling down a frictionless inclined plane? How can you predict the behavior of such an object for any randomly

chosen angle of incline?" This question in tam generated four sub-units, each with its own essential question: the

resolution of a vector into its horizontal and vertical components; the effect of multiple vectors (e.g. forces) acting on an

object; the relationship between force, mass and acceleration, and the role of friction as it affects the motion of an

object. The essential question for the fourth unit is: "When an object of known weight is pulled up an inclined plane at

a constant velocity, what is the relationship between the force of friction and the angle of inclination?"

This sub-unit was designed around the gathering of data from a physical experiment, and the mathematical

(symbolic, graphical, tabular, and geometric) analysis of the data. The multi-representational analysis component was

supported through the Function Probe software (Confrey, 1992). The unit was designed to include extensive student

discussion and reflection, collaborative work, small and large group tasks, and individual assignments. Students were

consistently encouraged to explore their own ideas and to make sense of physical phenomena in a context of

interactions with their small group, the entire class and their teachers. This approach to the design of the unit builds on

earlier work on projectile motion done by the mathematics education research group at Cornell University (Noble,

Flerlage, & Confrey, 1993).

The setting for this study was an alternative public school located in a small urban community. The

administration and teachers are actively engaged in curricular and instructional change in mathematics and science.

This study took place in an integrated algebra, trigonometry, and physics class with 17 students in grades 9 through 12,

who had elected to take the course. The class was divided into five small groups of 3 to 4 students. The class was team

taught by two experienced mathematics and physics teachers. One of the most important aspects of the classroom was

the role that the teachers took as guides and facilitators for student inquiry. There were no textbooks used by the

students nor did the teachers give lectures.

Data Sources and Analysis

Each class session of this unit was audio- and video-taped, and during the small group work, one selected

group was video-taped. Copies of the computer work generated by all the students were collected for analysis.

Extensive field notes were taken by the researcher during the class sessions. The video-tapes of class sessions were

reviewed and transcribed for more detailed analysis. The small group provided a setting within which to analyze and

observe how the students go about interpreting the posed essential questions, generating and negotiating their

conjectures, devising their strategies for analyzing the data, confirming the sense of one or more conjectures, and using

the tools and their empirical data.

The sub-unit began with two simple physical experiments done in the whole-class setting. The first experiment

began by simply pulling a block attached to a spring scale across a horizontal surface at constant velocity. The question

posed to the students was: "what is the force of friction in this situation?" In the second experiment, the students

measured the force required to pull a block of a given weight along a surface at varying inclines and at a constant

velocity. The essential question for this second experiment was: "how does the force of friction vary with the angle of

incline?" In both cases, ordinary spring scales, ropes, and blocks of wood were the apparatus.
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Results

The first experiment generated considerable discussion regarding the relevant variables: does the velocity at

which the block is moving matter? What about the initial acceleration of the block? Does the force vary with the

surface area of the block? How does the force change with the weight of the block? What exactly is being measured by

the spring scale? The students identified that the block did not move at a constant velocity throughout the experiment,

because the block began at rest and hence must accelerate to reach a given velocity. However, the students agreed to

focus on the behavior of the block while it was moving at a constant velocity. By pulling the block across the surface at

varying velocities, they observed that the force required to move the block was independent of the velocity of the block.

The students increased the weight of the block and observed that now a greater force was necessary to move it at a

constant velocity. The class then measured the force required to move various weights at a constant velocity. The

students quickly came up with the relationship that the ratio of the measured

force to the weight of the object was a constant; each group generated an
spring
scale appropriate symbolic expression for this relationship, such as Ff/Fw = µ, where

p is the coefficient of friction, Ff is the force of friction (in this case, the same as

the measured force) and Fw is the weight of the object. As the small groups

reported their results, several students questioned whether or not the force that

was measured on the spring scale was in fact the force of friction. One student

persisted in questioning this and asked about all the forces that were acting on

the object. This led to an argument from a force diagram which showed both the normal force and the weight of the

object in balance and the measured force and the force of friction in balance.

In the second experiment, the class measured the force required to pull a block of a given weight up an incline

at varying angles with a constant velocity (see Figure 1). The essential question posed for this situation was: "how does

the force of friction vary with the angle of incline?" Unlike on the horizontal surface, where the measured force equaled

the force of friction, it was not immediately clear what was being measured by the

spring scale. Hence, the problem for the students became an understanding of what

exactly is the measured force and, from that, can they find a relationship between the

force of friction and the angle of incline. Four students, Aria, Alycia, Paul and Sally,

were members of one group which investigated this problem. Their first step was

to enter the experimental data into a Function Probe table (see Figure 2). The first

conjecture was posed by Paul, who hypothesized that the coefficient of friction

depends on the weight, the kind of surface material, and the angle of incline. Paul

created a third column in the data table for the measured'force divided by the weight

and then graphed that variable versus angle. This graph, Paul claimed, represented

the coefficient of friction (mu) versus the angle. But Aria objected to this line of

reasoning, arguing that the coefficient of friction is a property of the materials of the

two objects and must remain constant.

P: No, wait For a horizontal surface

AR: Hm, hm

P: mu is a factor of weight and surface. So on the inclined plane, its

Figure 1. Experimental Setup

Table _RE
a m

angle mean u red

0.00 9.00
11.00 11.40
22.00 13.70
33.00 14.10
44.00 15.20
54.00 15.90
65.00 16.10
75.00 16.00
85.00 14.90
90.00 14.10
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Figure 2. Table of
Experimental Data
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a factor of weight, surface and angle.

AR: Well, no, it isn't It isn't mu.

P. Well, but it is then.

AR: No, but it isn't Because it's, it's, the mu stays the same. It has to stay the same. It's the same two

objects. It's just the angle that's making the numbers different It's not changing mu.

P: But mu could be a function of angle, the same as it could be a function of

AL: Because when it's at a different angle, it has a different weight.

Paul was using the measured force as the force of friction and arguing that the ratio of the measured force to the weight

of the object must give the coefficient of friction as a function of the angle of incline. But there were two emerging

challenges to his argument First, Aria asserted that the coefficient of friction (or mu) must remain constant, since it is a

material property. Second, Alycia suggested that the weight changes as the angle of incline changes. This comment

was temporarily not responded to, but soon turned out crucial to their understanding of what is being measured by the

spring scale. At this point, the teacher suggested that they focus on finding the force of friction. The students turned

their attention to understanding more about the measured force, and Paul began to argue that the measured force cannot

be equal to the force of friction:

P: OK. What I would say, is no, that's not mu. Because what we measured wasn't the force of friction.

AR: But it could have been

P What we measured, no, we measured the force of friction and, part of the force of friction and part of

the weight of the object Cause if we like let go of it, let go at that point, it would fall down

AR: I see. Right. And when it's across the horizontal you're not taking any of the weight, you're just

taking the friction. Sort of.

P: Right Yeah. So.

AR: I see your point.

P: The surface is holding up the weight entirely. So what we need to do is one of those little dimensional

things and figure out the component that's horizontal. (pause) Right?

AR: OK.

The new conjecture, qualitatively stated by Paul, is that the measured force is part of the force of friction and part of the

weight of the object. Paul then asserted that the force of friction must be the horizontal component of the measured

force. The other group members soon brought in alternative considerations. Sally argued from their data table back to

the physical situation and asserted that because of the weight, the friction would be less when the block was more

vertical: "I think that the friction would go down as the tangles in the) table went up. But I'm not totally sure that that's

what it did." Aria confirmed this argument by examining the situation at

90 degrees where the measured force is equal to the weight of the object

and there is zero friction. Alycia reasserted her earlier conjecture that the

friction has to do with the force parallel (i.e. that component of the weight

which is parallel to the inclined surface), not the horizontal component

of the measured force as suggested by Paul. Up to this point, the students

had been using the data table and the physical situation (particularly using
Figure 3. A Force Diagram
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both the horizontal and the vertical case) to support their arguments. Their next step was to make their arguments from

a force diagram (see Figure 3). Then they came to the tentative assertion that the force of friction changes as the angle

of incline changes because the amount of the weight that is pushing down into the ramp changes with the angle of

incline:

AR: The problem with this is, the force measured changes. So if the force measured is opposite the force

friction, they have to be the same. But, but how can the friction change? And what if it's at 90?

AL: The friction has to change because like the more you're pushing down on an object, the more friction

there is. And the more that you're, like the higher you get to 90, then the less it's pushing into the

ramp

P: Right! Right! Urn, this changes

AL: So of course it has to change.

AR: Friction has to change

P: The force perpendicular changes, which is the force weight acting on, between the two surfaces which

means that friction changes

AL: How much is it pushing into the ramp.

AR: OK. Friction changes

Alycia has articulated the crucial qualitative relationship between the force of friction and the amount of the weight

pushing into the ramp. Aria was now convinced that the force of friction does not equal the measured force and for the

first time Paul stated a relationship between the magnitude of the forces:

AR: I think with this that the problem I have is that the force friction obviously changes as it goes up, the

angle, but the force measured can't be the same as the force friction.

AL: Why not?

AR: Because imagine it at 90 degrees. You're just hanging there. The force measured is the weight of the

object. But there's no friction. There can't be at 90 degrees. So, how do we get from the force

measured to the force of friction?

P: The force of friction should be separate from the weight of the object

AR: Yeah, that's right.

P: From the weight, it should be, it should be in terms, the force of friction should be the weight, should

be the amount you're pulling minus the amount of the weight of the object that you're pulling

So they have rejected the conjecture that the measured force equals the force of friction, and a new conjecture regarding

the relationship of the three forces has been made by Paul. But, Alycia challenged Paul and Aria to make that

relationship more explicit:

AL: Wait, do an example, (pause), do it with numbers.

But neither Paul nor Aria knew quite how to proceed:

P: Do you think you could do it?

AR: No

P: I don't know, I don't really know how to start

AR: I don't know where, I don't know where

But the group continued to follow this line of reasoning, with Aria making more explicit the relationship that Paul
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articulated above:

AR: Yeah, what the scale, what the force measured is, is its the amount of weight that you're holding and

it's the amount of friction. (pause)

AL: Amount of weight that you're holding

AR: Yeah.

AL: Well, amount of weight, because the ramp is pushing up on it, so you're not holding like the complete

weight of it.

AR: Right! The point is that you're not holding the complete weight.

The group found the force of friction at an angle of 45 degrees: they calculated the portion of the weight that was

parallel to the angle of incline (force parallel: Fll = Fwssin45) and subtracted that result from the measured force at 44

degrees. Aria articulated the relationship for the force measured as the force of friction plus the force parallel, and they

explicitly wrote Fm = Ff + Fit and Fm = Ff + sin!) Fw. From this, they returned to the Function Probe environment,

where they quickly computed the force of friction as the measured force minus the force weight times the sine of theta.

They then graphed the force of friction versus the angle of incline and Aria suggested that the data looked like a cosine

curve, which they quickly fit with the equation f=9cosEL They identified 9 as the amount of friction at zero degrees.

Alycia's suggestion that their graph looked like a line wasn't investigated. Aria was puzzled by the fact that although

they had used the sine in this analysis, their final relationship used the cosine function. Now that they had the force of

friction, Paul returned to his earlier conjecture about the coefficient of friction as a function of the angle and created a

column for the force of friction divided by the weight. At this point, the teacher shifted the activity from the small

group interactions to whole class discussion.

Each of the small groups reported its analysis to the whole class. All of the groups had generated the

relationship given above for the force of friction, the force parallel and the measured force. One group conjectured that

relationship for the force of friction versus the angle might be linear, they had begun to look at fast differences but were

unable to confum a pauem. Another group realized that the constant 9 in the equation above was the weight of the

object times the coefficient of friction, which they labeled as the "initial friction." The whole class discussion then

brought closure to the initial question that was being investigated, as the class agreed that the force of friction on an

inclined plane is given by the coefficient of friction times the weight of the object times the cosine of the angle of

incline, or Ff = j.t Fw cose.

Discussion

This episode began with an inquiry into the role of friction for an object on an inclined plane. The students

began by investigating the force required to pull a block at constant velocity across a horizontal surface and then they

investigated this same event on the inclined plane. From this seemingly simple, concrete event, the students identified

numerous factors that would need to be taken into account: the velocity of the block, the size of the surface area, the

weight of the block, and an understanding of what exactly was being measured by the spring scale. When the event

took place on the inclined plane, the group was faced with the considerable challenge of making sense of the measured

force and its relationship to the force of friction. Their initial conjecture that the measured force equaled the force of

friction was rejected as they began to argue that the measured force must include both the force of friction and part of

the weight of the object. This led to a new conjecture about the relationship between the magnitude of the force of

friction and the part of the weight of the object that exerted a force against the plane.
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Several group members confirmed their claim for this relationship by arguing from their physical sense of what

happened at the vertical and horizontal conditions. A geometric diagram and a set of calculations for a specific case

then led to a symbolic representation of a relationship between the force of friction and the measured force. This

representation was thoroughly grounded both in a geometric argument for the direction of the force vectors and ina

qualitative understanding of the physical phenomena. This interplay between the grounded activity and the systematic

inquiry then led to further investigation with the symbolic expression. The students moved the expression into the table

window in the Function Probe environment and created a graph from which they generated an algebraic curve fit for

their final relationship. They demonstrated both a qualitative and quantitative understanding that only part of the weight

of the block pushed directly into the plane (and was therefore directly related to the magnitude of the force of friction),

while part of the weight was acting parallel to the plane directly counteracting the measured force. The students

brought together both the magnitude and the direction of the weight of the object in their qualitative argument for

understanding the measured force. However, expressing that relationship quantitatively through the compounding of

the force vectors generated multiple conjectures, the negotiation of new conjectures and confirming arguments from the

boundary conditions and a particular case of the physical experiment. Through a non-linear process, showing the

richness of the dialectic between the grounded activity and the systematic inquiry, the students created a compact model

for the relationship of the force vectors acting on an object on an inclined plane that included geometric as wellas

graphical, tabular and symbolic representations.
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PREFERRED PROBLEM SOLVING STYLE AND ITS EFFECT ON PROBLEM SOLVING
IN AN ADULT SMALL GROUP MATHEMATICAL ROBLEM SOLVING ENVIRONMENT

Vic Parsons and Stephen Lerman
Greenwich University, South Bank University,

London,U.K. London,U.K.
Abstract

In this paper we discuss research aimed at identifying
preferred problem solving style and its effect in
mathematical investigations, through a study of a group of
thirty seven Open University undergraduate mathematics
students. They were undertaking small group mathematical
problem-solving activities in the academic years 1993 to
1994 as part of their first year Foundation Course. The
evidence suggests that gender linked preferences are
directly relevant to mathematical problem-solving in small
groups for the mature students involved in the research
study.

X Introduction

The rationale for different mathematical problem solving

styles has been advanced by Pask (1976) who identified two

distinct problem solving strategies that could be used in

mathematical problem solving, namely holistic and

sequential. Research by Parsons (1990, 1994) and Scott -.

Hodgetts (1986, 1987) suggested that gender was an important

factor in determining the preferred problem solving strategy

either holistic or sequential that might be adopted. The

cause for concern here is how important gender would be in

differentiating the perceived problem solving style adopted;

and its assessed effect on the solution of a geometric

mathematical investigation involving Pick's theorem. The

powerful differential influence of social norms in relation

to gender in British society are well established in

mathematics education by researchers such as

Burton (1992,1994), Hammersley and Wood (1993), and Isaacson

(1992). Hence a plausible hypothesis would be a link between

women and a preferred sequential problem solving style.

The research methodology used in this investigation of

preferred problem-solving strategies was primarily

ethnographic, but a wider variety of evidence including

quantitative data was collected as well.

3 176

184



Quantitative evidence was also collected from a

questionnaire, administered after the ethnographic

interviews. In addition it was decided to analyze the

students' work for evidence of either holistic or sequential

working after both ethnographic interview and questionnaire

had been completed and to relate this analysis to the

students own perceptions of the problem solving style that

they thought they were using. A problem solving

investigation involving Pick's theorem was thus assessed for

the quality of the mathematical process and mathematical

product involved in the students solution. Problem solving

protocols suitable for such mathematical investigations are

noted by Mason (1984) and by the Mathematics Foundation

Course Team of the Open University (1994). The thirty seven

students in the main study reported here, were requested to

work together in small cooperative groups of three or four

on a range of numerical, geometric, abstract and applied

mathematical investigations that had been selected on a

continuum from closed to open in terms of the type of

solutions suggested in a manner similar to that outlined by

Parsons (1994). Initial conclusions from this data will be

presented here and represent a small part of a much larger

research study aimed at investigating the_Affect of gender

variables in adult undergraduate mathematical problem

solving investigation environments.

The data which will be presented here will be :-

(i) Reports by the students of their preferred learning

style.

(ii) Examination of the learning style used in a problem

deduced from marking the students work.

(iii) Actual assessment scores to indicate whether students

were disadvantaged or not using that problem solving style.

2 Analysis of the Qualitative Data

The twelve women in the mathematical problem solving

investigation groups all expressed a preference for a

sequential problem solving style.

3 177



The twenty six men in the mathematical problem solving

investigation groups however said they used a mixture of

problem solving styles, both holistic and sequential. This

suggests a gender bias with regard to likely mathematical

problem solving strategy. The powerful nature of this

preference for different problem solving styles is

illustrated by the following extracts from interviews with

the students.

The comments of the women problem solvers are particularly

revealing, and four typical responses are given. The

students I shall call Meg and Lina worked in groups which

were informed about the nature of holistic and sequential

problem solving styles. Meg worked in an all women problem

solving group and Lina in a mixed gender problem solving

group.

MEG

"I think I break it down and do it sort of step at a time.

It seems easier. You can just sort of start on a lowish sort

of level like building up bricks, you know like building

bricks. You start with just a little bit and build on from

there. We were all simply breaking the problem down into

little bits."

TINA

" I started you know to build it up from the problem because

you miss out something if you try and specialise and try to

do the whole problem. It is better to take a specific

example or category and see what is happening, you know. In

fact that is why I missed out on that last problem because

they were going for a general formula while I was trying to

build it up in small pieces."

The students I shall call, Diana and Stella both worked in

groups which were not informed about holistic and sequential

problem solving styles.
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Diana worked in an all women problem solving group and
Stella a mixed gender problem solving group.

DIANA

"What we were doing was going in small little steps and I

came to the conclusion that you did have to tackle them in

that way. But I also while I'm doing it try to get an

overall picture of where I'm going. This is quite often

where I do have a problem in problem solving, trying to

think ahead of myself, and yet I'm still working step by

step systematically when I'm trying to get an overall

picture. I am however overall using a step by step approach

to get this overall picture."

STELLA

"I think I use trial and error. I think I was taking little

bits and building up. I think I always do that when I

problem solve now. I mean before I wouldn't have had any

idea how to approach it so I can appreciate how people feel,

because they look at it and think I can't do that. If

somebody starts me off I can go, but I need that guidance."

The responses from the men, however, varied and two typical

responses that reflect the responses from men in both

informed and non-informed groups with respect to holistic

and sequential problem solving style are given.

The student I shall call O'Hara came from an all men problem

solving group, and the student I shall call Azhar from a

mixed gender group that included Lina.

(10LHABA

" I prefer to work in small stages towards a solution

because it gives us a layout by starting systematically so

that a pattern will emerge and you see the pattern very

easily; you know you see the trend, I mean where you are
heading to. You know it gives you clear stages of

development that you can follow. Not everybody in our group

worked in the same way."

AZUM
"The method I used varied but was pretty much holistic. That

was how the problems were meant to be done. in the first
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place, because I could see most of what was involved. I tend

to run ahead with my ideas presuming a lot of mathematical

things, you know, which someone like Lina with a lesser

mathematical background would need to have explained to her.

As to our group it's been myself who did the directing. Lina

she's more lacking in self confidence and so she doesn't

join in, she has no ideas or mathematical knowledge, she

tends to stick to just doing one thing. I think she is very

negative influence in the group mathematically."

3 Analysis of the Ouantitative Data

The quantitative data from the questionnaire developed

during a pilot study was used to substantiate the inferences

deduced from the ethnographic interviews. The questionnaire

was administered immediately after the ethnographic

interview and the results it yielded with respect to the

students perceptions of their preferred problem solving

style are given in table 1 below: -

TABLE 1: Preferred Problem solving style
WomenMen

Sequential 15 12

Neither Sequential or Holistic 1 0

Holistic 9 0

Total 25 12

These result appear to confirm Parsons (1994) and

Scott-Hodgett's (1986,1987) claim that the men could use

both holistic and sequential mathematical problem solving

strategies, whereas the women exclusively would use a

sequential problem solving style.

4 Objective analysis of the students use of problem solving

Strategy when solving Pick's theorem
The students actual work was assessed for the type of

problem solving style used when solving Pick's theorem. It

was graded for both mathematical process and product and a

summative score obtained.

The purpose of the analysis of problem solving style used

was to see how accurately the students perceived problem

solving style matched the reality of the actual problem
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solving style observed. The results of this analysis is

shown in table 2 below :-

TABLE 2: MEN OBSERVED PROBLEM SOLVING STYLE

HOLISTIC BOTH SEQUENTIAL UNKNOWN

PERCEIVED Holistic 7 0 1 1

PROBLEM Neither 1 0 0 0

SOLVING Sequential 7 4 4 0

STYLE Total 15 4 5 1

TABLE 2: WOMEN OBSERVED PROBLEM SOLVING STYLE

HOLISTIC BOTH SEQUENTIAL UNKNOWN

PERCEIVED Holistic 0 0 0 0

PROBLEM Neither 0 0 0 0

SOLVING Sequential 0 3 9 0

STYLE Total 0 3 9 0

5 Problem solving mean performance by gender grouping

An analysis of the actual problem solving scores in the

different gender groups is given in table 3 :-

TABLE 3: ME?(

Ivne of Gender Group Mean Problem Solving Score Number

All Men 37.0 15*

Mixed Gender 39.9 9

Total 24

TABLE 3: WOMEN

Type of Gender Group Mean Problem Solving Score Number

All Women 43.9 9

Mixed Gender 43.3 3

Total 12

* Note one student did not submit mathematical problem

solving investigations work for assessment.

6 Discussion

The analysis of the interview data suggests that the adult

undergraduate mathematical investigation problem solvers in

the research project used specific gender orientated problem

solving styles. The students' perceptions of their own

problem solving was that the men could use either a

sequential or holistic problem solving style whereas the

women would prefer to always use a sequential problem

solving style. These results were confirmed to a significant
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degree by an analytic analysis of the students scripts for

the actual problem solving style used. Certain interesting

points were noted to occur in this objective analysis.

Firstly, more.of the men were actually using a holistic

problem solving style than thought they were.

Secondly, three of the women in one of the all women groups

who were alerted to the possibility of using both problem

solving styles in a worked example, did in fact use both

holistic and sequential problem solving styles, but were

more often using a sequential problem solving strategy.

At this stage a claim may be made that adult women are

likely to prefer to adopt a sequential problem solving style

when undertaking mathematical problem Solving

investigations. Men are more likely to use either holistic

or sequential problem solving approaches and their style may

depend on the type of problem selected from a finite set

of possible problems available ranging from closed to open.

It is interesting to note that an assessment of the students

mathematical problem solving ability when using these

problem solving styles gave the higher average score for

women working in all women groups (87.8%) the next highest

average score to women working in mixed groups (86.6), then

the next highest average score for men working in all men

groups (79.8%) and finally the average score for men working

in mixed groups was (74.6%). These scores suggest'that the

women were not disadvantaged when using a sequential problem

solving style on the mathematical investigation involving

Pick's theorem.

It does however indicate the powerful nature of gender

variables in mathematics problem solving. Further interview

data will be presented at the Nineteenth International

Conference of the Psychology of Mathematics Education.
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PROPORTIONAL REASONING BY HONDURAN TOBACCO ROLLERS
WITH LITTLE OR NO SCHOOLING

Steve M. Fisher and Judith T. Sowder
San Diego State University

There is a continuing interest in out-of-school mathematics, only a small
amount of which has focused on proportional reasoning. This study, in the
Nunes et al. tradition, investigates the proportional reasoning abilities of
Honduran tobacco rollers. Ten workers with one to four years of schooling
and at least 15 years of experience in tobacco rolling were interviewed.
Questions were intended to explore their backgrounds, their ability to solve
simple proportion problems, to solve problems involving reversing the way
they usually solved proportion problems, and to solve proportion problems
in new contexts. Instrumental versus relational understanding was also
explored. Results here support the Nunes et al (1993) results.

Research on learning mathematics in informal, out-of-school settings is a
somewhat recent phenomena, primarily undertaken by psychologists and
anthropologists (e.g., Ginsburg, Posner, & Russell, 1981; Lave, Murtaugh, & de la
Rocha, 1984; Nunes, Schliemann, & Carraher, 1993, Saxe, 1988). This research is
also of interest to mathematics educators: Questions of the generalizability of
mathematical learning to unfamiliar situations, of the role of context in learning
mathematics, of the types of mathematics that can be learned informally verses the
mathematics that is dependent on mathematical symbolism for learning, all can
affect the organization of the curriculum and planning for instruction.

The development of the ability to reason proportionally is an area of particular
interest. Nunes et al. (1993) point out that if those who have learned mathematics
out of school can solve proportional problems and transfer their learning to new
situations then perhaps everyday mathematics is not inherently different from
school mathematics. They examined the proportional reasoning abilities of
Brazilian construction foremen and of Brazilian fishermen with little formal
schooling. They found, contrary to popular thinking that proportional reasoning
needed to be learned in school, that both groups could reason proportionally, and
that some fishermen were able to reverse their thinking in proportional situations,
and were able to generalize to other situations.

In this study, we examined reversibility and generalizability of the proportional
reasoning of a new group of people with little formal schooling. In addition, we
wanted to examine the manner in which proportional reasoning develops, and the
depth of understanding the people had of proportional situations, that is, whether
people reasoned instrumentally or relationally (Skemp, 1978).
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Method

During a pilot study, Honduran villagers who were small shop owners,
construction and masonry workers, and tobacco rollers were interviewed. All of
the workers lived in small villages where the first author had previously worked as
a Peace Corps volunteer. One of the tobacco rollers appeared to have developed
methods for mentally solving rather complex proportions. We decided to focus on
tobacco rollers for this study.

Ten Honduran tobacco rollers, nine females and one male, were subjects for this
study. They were located with the assistance of three local people known to the first
author. All participants had between zero and four years of education. Only one
had been to school in 25 years; she attended an brief adult literacy class and claimed
not to have learned much. Seven of the ten earned a living exclusively from work
in tobacco, and had worked full time at least half of the last year. The remaining
three had done mostly hired housework or some coffee harvesting in addition to
their tobacco work, but all three had worked with tobacco in the prior six months.

The participants were asked background-questions regarding the amount of
schooling they had, the types of jobs they had had, and the years they had worked
with tobacco and the specific tasks with which they had experience (e.g., buying
tobacco, rolling cigars, and selling cigars). They were then asked a series of
questions organized into three categories: Beginning and intermediate level
questions explored their understanding of proportional situations within the context
of tobacco; advanced level questions also examined reversibility and transfer to new
situations. Examples of beginning level questions are: How many pounds of
tobacco are needed to make a tarea (250) of cigars? If you roll 35 cigars each hour,
how many can you role in four hours? If you sell a certain cigar at 5 cigars for 2
Lempiras, how much would you charge for 20 cigars? Examples of intermediate
questions are: How many wheels (50 cigars) is 1750 cigars? Which yields a higher
profit per cigar, a wheel for 5 Lempiras, or 5 cigars for a Lempira? Examples of
advanced questions testing the ability to reverse reasoning are: How much do you
pay for an arroba (25 pounds) of tobacco? How much is that per pound? How
many pounds is that per Lempira? [weight /price rather than price/weight]
Examples of advanced questions that tested transfer are: On the north coast, in
order to make pasteurized milk, the factories buy canisters of fresh milk and then
use a filtering process to take out the thicker ingredients (cuajada] and some fat.
They buy 20 canisters of milk in order to produce 800 liters to sell in the public.
How many canisters would be needed to produce only 200 liters? How many liters
would 15 canisters produce? Advanced questions were not asked if the interviewee
had much difficulty with earlier questions.
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All interviews were tape-recorded, transcribed, and translated into English.
The transcripts were then examined for data related to each of the research
questions.

Results

The Development of Proportional Reasoning as a Function of Experience.

The local residents who helped locate subjects for the study were asked to
identify some tobacco rollers who were just learning the work, some who had been
working a few years, and some who had been working for many years. However,
we found that rolling cigars by hand is being replaced by mechanized methods_ in
larger towns and cities, and no one is learning to roll by hand any longer. The least
experienced tobacco roller had worked with tobacco for 15. years. It was therefore
not possible to compare workers at different levels of experience. Nonetheless,
another related and unexpected question did arise. Since all of the interviewees had
at least 15 years of experience with tobacco, it might have been expected that most
if not all of them would have developed relatively advanced strategies for solving
proportions involving tobacco. Such was not the case. One interviewee could not
think about and solve questions dealing with quantities she had worked with
repeatedly, whereas others were able to develop methods, in addition to
memorization, to successfully solve problems. For example, C, with 15 years of
experience, was asked the following:

S. Suppose you have 1750 cigars. 1750. How many tareas (250
cigars) is that?

C. 4 tareas plus 750. 4 tareas, 7 tareas. Yes 7 tareas.
S. Now counting wheels of 50, how many wheels of 50 are there in

1000?
C. In 1000 there are 20. In the 3 tareas there are 15. 15 wheels.
S. So with 1750 cigars, how many wheels would that be?
C. 35 wheels.

Why could some people reason better than others with these questions? Two
factors seemed to play a role: other work experiences and education level. Only
three or four people interviewed had worked in areas other than tobacco that might
have given them other opportunities to learn to reason proportionally. These
people were more successful in answering the interview questions. Also, the three
who had four years of schooling were also more successful, and made use of a
wider variety of approaches and mental strategies than cigar rollers with almost no
formal schooling. This result was surprising, considering that it had been so long
since any had been to school. However, it may have been the case that those who
exhibited better reasoning ability were kept in school longer.
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Instrumental versus Relational Understanding.

Proportions with familiar and unfamiliar numbers within the tobacco context,
Nine of the ten cigar rollers were able to solve very familiar proportions, although
two relied heavily on memorized ratios. Each person interviewed had a set of
numerical relationships that had been memorized. They used these relationships in
solving slightly unfamiliar proportions. M. is an example of an individual who had
some difficulty solving problems that involved unfamiliar quantities. She was asked
how many wheels of 50 cigars are in 1750 cigars. She answered that 40 wheels is
2000, and that in 3000 there are 60 wheels, thus using memorized ratios and
indicating that she knew it would be between 40 and 60 wheels, but she could not
answer for 1750. She was then asked about 1500 cigars, and responded: "1500. In
1000 cigars, there are 20 wheels I said, right? So there are like 30 wheels."

As the problems became less familiar, five of them continued to be capable of
applying familiar ratios to solve these problems. When asked how many groups of
20 cigars there are in 250 cigars, G. first stated that there are five groups of 20 in
100 cigars, then said: "Well, 5, 10 groups of 20. 10. 10 groups of 20. So it's 12
groups of 20 with 10 cigars more."

Finally, as the numerical relationships became the most foreign and complex
(but were still discussed within the context of tobacco), only four of the people
interviewed could correctly reason through to an exact solution. For example, R.
was asked how much to charge for 20 cigars if 5 cigars cost 2 Lempiras. He said
that cigars were never sold in groups of 5, but proceeded to say that it would be 8,
by counting how many five's there were. He thus unitized the ratio 5:2 and used
norming (Lamon, 1993) to comfortably solve the proportion. Another frequently
used approach when working with unfamiliar numbers was to convert the given
ratio to a unit ratio. For example, three people, when solving the proportion that
involved 6 cigars for 2 Lempiras, used instead the ratio 3 cigars for 1 Lempira.
Typically in the literature, proportions that cannot be solved by taking integral
multiples of a ratio are viewed as more challenging than proportions that can (Hart,
1981; Nunes et al., 1993). Four of the ten interviewed were able to completely
solve these types of proportions, while a fifth gave estimates using correct
reasoning.

Reversibility. Most of the mental calculations that this group of cigar rollers
did in their daily tobacco work required them to repeatedly take multiples of a give
ratio. A typical example of this was when a person calculated how many tareas
could be formed from 2000 cigars by repeatedly adding groups of 25G cigars, or
when a worker figured out how much to charge for a tarea (250 cigars) if a wheel
of 50 cigars sold for 6 Lempiras, by devising a method to add 6 Lempiras to itself
the appropriate number of times. It was much less common for a tobacco roller to
need to take a fraction of (both components of) a ratio, starting with a given ratio
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and finding a given portion of that larger ratio. Thus, for this group of workers,
testing for reversibility largely consisted of simply seeing whether they could take a
larger ratio and simplify it down to a smaller ratio. An important special case of
this was exploring whether they were able to find a unit ratio, given a non-unit
ratio. To more completely test for reversibility, workers needed to be tested on
their ability to transform a non-unit ratio into a unit ratio using more complicated
"multiplication factors" than simply half the given ratio.

Six tobacco rollers were asked to calculate the price of one pound of tobacco,
given the price for an entire arroba (25 pounds) of tobacco. Because they were
normally accustomed to calculating the value of a larger amount of tobacco, given
the price of a smaller weight of tobacco, this problem required them to reverse
their usual calculation procedures. When the six who were asked this question
given a price of 50 Lempiras per arroba, four could answer 2 Lempiras. These
four were then asked the price per pound based on L35.00 per arroba. If they were
able to solve this, it was by estimating, based on the fact that L25.00 per arroba
meant one Lempira per pound. D, for example, said that it was about 1.25
Lempiras per pound, and when asked how she obtained this, she said: "You know
that 25 Lempiras per arroba, it comes out at one Lempira per pound. So adding on
the other 25 centavos, it comes out at 1.25 or 1.50 Lempiras, around there it comes
out. (So it's not exactly 1.25 Lempiras?) No. Since it's 10 Lempiras more than the
25 Lempiras." Three who answered this question correctly were then asked how
many pounds of tobacco they would be given for one Lempira, and were able to
solve this successfully. The worker who answered these questions and also
questions in other contexts correctly was also able to solve an out-of-context
problem involving reversibility.

Solving proportions outside of the context of tobacco. Nine of the ten people
interviewed were asked proportional reasoning questions that were not in the
context of tobacco or cigars. Of the nine, six were able to discuss and correctly
answer at least basic out-of-context problems, all of which involved coffee
harvesting and milk production. Of the six, five were able to answer problems that
could be solved by taking integral multiples of a unit ratio. For example, D was
asked how many gallons of coffee she would need to pick in order to earn 50
Lempiras, if she earned 5 Lempiras for every 2 gallons. She used a unit ratio of
L2.50 per gallon, then calculated L3.00 x 20 and adjusted by subtracting L0.50 x
20.

D. . . . It comes out at 2, uh, 20 gallons, what you'd have to cut in
order to earn the 50 Lempiras.

S. And what numbers did you make use of to get 20? how did you
calculate it?
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D. You see, I multiply. L2.50 each gallon. So, at L2.50, 50
Lempiras, take away the 10 Lempiras, you end up with the 20
gallons.

Because of the non-integer unit ratios involved and the strange context,
interviewees might have been expected to perform poorly compared with earlier
problems where these two factors were not present, but this was not the case. The
tobacco workers performed approximately as well outside the domain of tobacco as
they did within the context of tobacco. For example, Y was asked how much she
should be paid for picking 4 1/2 gallons of coffee beans if she earns 8 Lempiras for
every 3 gallons she picks. She used decomposition, unitizing, and norming to
answer:

Y. He pays 8 for 3. It goes up by one, 1 1/2.
S. Yes, 1 1/2. From 3 to 4 1/2. Now you pick 4 1/2. How much

does he have to pay?
Y. 12.
S. He pays 12. How did you get that just not? What numbers did

you work with?
Y. You split up the 8 for 3. Then with 1 1/2 more.

Two others answered this question in a similar fashion. In a different problem, G.
could correctly tell how many liters of milk could be produced from 15 milk
canisters if 20 canisters yield 800 liters of processed milk, but she was unable to
explain her reasoning..

Another new-context problem involved using foreign units of weight and
money. Three workers who had answered previous questions successfully were
asked about a tobacco worker in Portugal who pays 120 escudos for 20 kilos; how
much per kilo. Only one could even begin to solve this problem; the others said
they were not familiar with kilograms.

Discussion

This study adds support to the results of the Nunes et al. (1993) studies of the
use of proportional reasoning among workers who have had little schooling but
have been afforded opportunities by their work for learning to reason
proportionally. In particular, it supported their findings that many workers could
reason correctly when called upon to solve problems requiring them to reverse
their usual way of solving proportion problems, and to transfer their understanding
of proportion to unfamiliar situations. We found that the types of strategies used to
solve proportion problems, whether or not they involved reversibility, were
similar. In the Nunes et al. (1993) study, two strategies were found to account for
94% of the responses of Brazilian construction foremen who were asked to solve
proportional problems involving scales. The first, used 34% of the time, they
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called "hypothesis testing." It involved hypothesizing what scale was used in a given
blueprint and then calculating the unknown value in the proportion to verify
whether the expected result was correct. In this study of tobacco workers, this
approach was also frequently used in order to avoid reversing or inverting familiar
procedures. D.'s estimate of the price per pound given 35 Lempiras per arruba,
described earlier, is an example of this strategy. The second strategy, used about
60% of the time and called "finding the relation" involved taking a given ratio and
expressing it as a unit ratio, then applying this unit ratio of other ratios (unitizing
the unit ratio, in the words of Lamon, 1993), by repeatedly adding the unit ratio or
by multiplication. Because this approach could be used to solve unfamiliar
proportions, it could be considered relational understanding. This approach was
also quite common in the study of tobacco workers. Although less than 60% of the
tobacco workers showed relational understanding (either through their use of
finding a relation or using another method), this may have been due to the
difference in education level between the tobacco workers and the foremen.

In the Nunes et al. study (1993) of the proportional reasoning ability of
Brazilian fishermen, there was no significant drop in accuracy or change in
methodology used when problems of the same type were presented in the context of
agriculture rather than in the familiar context of fishing. Almost 80% of the
proportions related to agriculture were solved by taking integral multiples of a
ratio; a figure almost identical to results when problems of the same type were
asked in the context of fishing. The percentages of correct responses in the Nunes
et al. study were, again, somewhat higher than corresponding results in the
Honduran study. Only 47% of the tobacco workers' responses to proportion
problems in unfamiliar contexts were correct. More unfamiliar context problems
in this study included proportions that could not be solved by taking the integral
multiple of a unit ratio, but even when these problems were excluded, the
percentages of correct answers is not significantly altered. On the one hand, these
results confirm the findings of the Nunes et al. study that there was not a great deal
of difference between tobacco workers' accuracy in solving tobacco problems as
compared to their accuracy in solving problems in other contexts. On the other
hand, the percent of problems answered correctly (in any context) by the Honduran
tobacco workers was consistently lower than corresponding percentages for the
Brazilian fishermen. These differences in results between the two studies cannot be
explained by difference in work experience. Both the Honduran tobacco workers
and the Brazilian fishermen had relatively few opportunities outside of their
respective fields to develop proportional reasoning. Again, one possible
explanation for the difference in results might be the education level of the people
interviewed. This explanation deserves further study.

Lesh, Post, and Behr (1988) described five levels of conceptualization students
display as they progress from pre-proportional reasoning to true proportional
reasoning. At the lowest level of reasoning, additive strategies are incorrectly used
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instead of correct multiplicative strategies. We found some instances of additive
reasoning: When M. was asked how much to charge for a tarea (250 cigars) if 50
cigars sell for 6 Lempiras, she used the familiar fact that since the current market
price was 5 Lempiras for 50 cigars, which yielded 25 Lempiras for 250 cigars, then
a price of 6 Lempiras for 50 cigars must yield a price of 26 Lempira for 250
cigars. The second, third and fourth stages of proportional reasoning are marked
by increasing awareness of the multiplicative nature of a proportional relationship.
Seven of the ten tobacco workers showed varying degrees of understanding that
their work with tobacco involved multiplicative situations. Several used unitizing
(forming composite units) and norming (interpreting a given situation in terms of a
composite unit), processes identified by Lamon (1993) as critical to the ability to
reason proportionally. Only the fifth stage identified by Lesh et al., that of writing
a mathematical sentence similar to "A is to B as C is to D" was not observed here.

Our results suggest that although the types of mathematical experiences an
individual has had do have an influence on what mathematics is learned and what
methods a person develops to solve problems in mathematical situations, some
individuals clearly develop more complex and powerful methods than others. It
appears that the degree of exposure to a mathematical situation is not the only
influence on a person's ability to solve unfamiliar problems and generalize to new
contexts. Clearly identifying other factors that affect a person's ability to
generalize would clearly contribute to our understanding of how mathematics is
learned, and how it should be presented in the mathematics curriculum.
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CAN YOUNG CHILDREN LEARN HOW TO REASON PROPORTIONALLY?
AN INTERVENTION STUDY

Alina Galvao Spinillo
Universidade Federal de Pernambuco

Recife-Brazil

This study examines the possibility that young children can learn how to make proportional
judgements by using the 'half strategy in terms of part -part relationships. One hundred andeigthy
children (6 to 8 years old) were given a pre- and a post-test (Bruner & Kenney, 1966). Children of
each age were equally divided into two control groups and a training group. Children in the
training group were taught to use the 'half strategy in part-part terms to solve a proportional task
(Spinillo & Bryant, 1991). No significant differences were found among the three groups in the
pre-test. However, in the post-test children who received the training gave significantly more
correct responses and proportional justifications than those in the controlgroups. Only these
children did significantly better in the post-test than in the pre-test. The conclusion was that
children of these ages can be taught how to make proportional judgements. The use of 'half in
such part-part relations may be an important boundary that helps children in makingproportional
judgements. This is in fact a new way of looking at proportional reasoning in children.

The concept of proportion is considered a late acquisition (e.g., Piaget & Inhelder,

1975; Inhelder & Piaget, 1958). However, there are evidences that children as young as 6
years can: (a) make proportional judgements by using the 'half boundary (e.g., Spinillo,
1990; Spinillo & Bryant, 1991); and (b) be taught about proportion (e.g, Siegler & Vago,
1978; Muller, 1979; Brink & Streefland, 1979).

Spinillo (1990) and Spinillo & Bryant (1991), for instance, found that 6-year-olds

can make proportional judgements. In these experiments children used the half boundary

CRIME than half, 'less than half and 'equal to half) to plot out the first-order relations
which were established in part-part rather than in part-whole terms. Children's use of this
boundary in part-part terms could be the basis for the initial understanding of proportion.

Singer & Resnick (1992) explored the representations children use in reasoning
about ratios. The main question in this study was whether children who did not fully
mastered proportional reasoning were part-part or part-whole reasoners when solving a
proportional task. The contusion was that children's representations are generally based on
the parts. This is an important information about the way children initially deal with
proportion, and this is in accordance with Spinillo & Bryant's (1991) findings.

Other studies (e.g., Muller, 1979; Spinillo & Bryant, 1991) have also showed that

children make some proportional discriminations on the basis of relative codes such
`greater than', 'smaller than' and `equal to'. This may suggest that they use perceptual
abilities to make such discriminations and that the initial grasp of proportion should be
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sought in the realms of perceptual understanding. A similar patem of result was found by

Lovett & Singer (1991) in a experiment about the perceptual and quantitative conceptions

children have about probability. It was established that perceptual strategies are preferred

when either perceptual and quantitative strategies could be adopted.

One can ask whether children could be taught to reason proportionally if they were

given concentrated experience with part-part comparisons that cross the 'half boundary or

which explicitly involve 'half. This idea was tested in an intervention study. We used non-

numerical tasks in order to explore proportional judgements without emphasizing complex

computational skills.

METHOD
Subjects
One hundred and eighty children aged 6, 7 and 8 years, attending elementary

school.

Experimental Design and Procedure

Group I (Control Group - CG1) 1st Session: Pre-test - Bruner & Kenney's (1966)

fullness task. 2nd Session: they were asked to solve a proportional task (Spinillo & Bryant,

1991). They received no explanation or feedback on the correctness of their responses. 3rd

Session: Pos-test Bruner & Kenney's task.
Group 2 (Control Group CG2) - 1st Session: Pre-test - Bruner & Kenney's task.

2nd Session: Pos-test - Bruner & Kenney's task.

Group 3 (Training Group - TG) - 1st Session: Pre-test - Bruner & Kenney's task.

2nd Session: Training procedure children were taught to use the 'half strategy in part-part

terms in a proportional task (Spinillo & Bryant) different to that given as a pre- and a post-

test. 3rd Session: Pos-test - Bruner & Kenney's task.

The task used in the pre- and in the post-test (Bruner & Kenney, 1966) consisted of

comparisons between two of glasses filled with different levels of water. Children were

asked which container was fuller than the other or whether they were equally full and to

justify their responses.
In the task presented to Group 1 and to Group 3 (Spinillo & Bryant, 1991) children

had to judge which of the two large rectangles was represented in a small picture. The

rectangles were choices and the picture was the standard (Figure 1).
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Figure 1: Examples of the material and trials in the task (Spinillo & Bryant, 1991).
Crossing 'Half Comparisons (5/8 vs 3/8) and `Half Comparisons (4/8 vs 6/8 and 4/8 vs
2/8)

Crossing 'Half
'Half ComparisonsComparacao

II 1;-1

1/11
' Half

111:1olic 1
2/8

In the training group (Group 3) the experimenter explicitly taught children to use

the 'half strategy in part-part terms. They were provided with feedback and explanations

about how to use the 'half boundary to decide about the equivalence or non-equivalence
between two choices and a standard. Examples:

(1) Correct choice selected:

Trial crossing the half boundary (Crossing `Half Comparisons):
5/8 black (standard) 3/8 black vs 5/8 black (choices)

E - "Yes, that's right. You have chose the rectangle with more black than white as in the
picture (standard). It cannot be the other one because the picture shows more black than
white and this (3/8 choice) has more white than black. There is more than half black in the
picture and less than half white."

Trial explicitly involving half (`Half Comparisons):
2/8 black (standard) 2/8 black vs 4/8 black (choices)

E - "Yes, that's right. This one (2/8 choice) matches with the picture because in both there is
less than half black and more than half white. It could not be the other one (4/8 choice)
because it shows half black and half white. Black and white are equal inside the rectangle.
In the picture they are different: there is more white than black."

202
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(2) Incorrect choice selected:

Trial explicitly involving half: (`Half Comparisons)
6/8 black (standard) 4/8 black vs 6/8 black (choices)

E - "No. It is the other one. You know why? Because in the picture there is more black than
white and in this one that you choose there is half black and half white. This (6/8 choice) is

the correct one because it matches with the picture. In both there is more than half in black

and less than half in white."

Trial crossing the half boundary (Crossing 'Half Comparisons):
5/8 black (standard) 3/8 black vs 5/8 black (choices)

E - "No, they do not match. Well, it could not have been this one you choose (3/8 choice)
because there is more white than black in it, while in the picture there is more black than

white. In the picture there is more than half black and in this one (3/8 choice) there is more
than half white. Look at this one here (5/8 choice): it has more than half painted in black
and less than half in white. Now, look at the picture (5/8 choice): it matches with this (5/8

choice) because in both we have more than half black and less than half white. It looks

different because the everything in the picture is smaller than in the large rectangle. Got

it?"

RESULTS

The responses in the pre- and in the post-test were coded for the number of correct

responses and for the types of justification given in each trial.

Correct responses
Table I shows the general scores in this experiment. It can be noted that the training

procedure had a strong effect on children's performance.
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Table I : Percentage and mean number of correct responses

CGI CG2 TG

AGE PRE POST PRE POST PRE POST
M % M % M M % M %

6 9.7 54 9.6 53 10.8 60 II 61 9.2 51 13.7 76

7 10.8 60 12 67 8.7 48 9.2 51 9.1 51 16.1 89

8 9.7 54 9.5 53 10.4 58 11.6 64 10.7 59 15.2 84

The Age term had no effect on children's performance in the pre-test (v.2633,
Kruskall-Wallis - One-way ANOVA) and in the post-test (p=.I5 I 3).

In the pre-test, the number of correct responses did not differ significantly between

groups (Mann-Whitney: CGI vs CG2, p = .7109; -CG2 vs TG, p=.4134;and CGI vs TG,

v.6002), whereas there were marked differences between groups in the post-test. This was
due to Group 3 (TG) children being more successful than those in the othertwo groups (p
<.0001). No significant differences were found between the two control groups (p=.8059).

The performance in the pre- and post-test was compared by means of Wilcoxon.
This revealed that there were no significant differences between pre- and post-test for the
children in Group 1 (p=.7998) and in Group 2 (p= .3454). In contrast, Group 3 children

performed significantly better in the post-test than in the pre-test (p <.001). This was
particularly so at the ages of 7 and 8 years old

Thus, prior to training the performance among ages and groups was much the same.
This suggests that children had a similar initial understanding of proportion in the fullness

task. However, after training, Group 3 (TG) children gave significantly more correct
responses than children in the control groups. This means that they were able to benefit
from instruction and that the training procedure improved children's performance.

Justifications

These were classified into three types. The 6.480 justifications were analysed by
two independent judges. The reliability of coding assessment between them was 90.46%.

Justification I no justification or irrelevant justification. Examples:"I don't
know.", "Because I knew it."; "I gessed."

Justification II - non-proportional justifications. Children's judgements were based
on the quantity of water in the container rather than on the proportion. Examples:
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"This is fuller because it has more water than the other. "; "The water here is high

and in the other it is low."; "Both has water in the top, but this one is fuller because the

glass is bigger."

Justification III - proportional justifications. The children compare the empty space

to the space occupied with water (part-part comparisons). In some of these justifications

children explicitly mentioned the 'half boundary. This was more often produced after
training. Examples:"This is fuller because it has more water than empty space. In the other

there is more empty space than water.", and "The water is different. There is more water

here than in here. But they are equally full because they have half air and half water."

Table 2 shows the incidence of types of justification in each age separately.

Children after training produced more proportional justifications than those iri the control

groups.

Table 2: Incidence of each type of justification.

6 YEARS

JUST CG1 CG 2

I
II
III

TG

PRE POST PRE POST PRE POST

2 1 10

305 306 305

53 53 45

18 2 0
300 322 163

42 36 197

7 YEARS

JUST CG I CG 2 TG

PRE POST PRE POST PRE POST

I 4 5 4 5 7 1

II 278 240 329 315 312 128

III 78 115 27 40 41 231

8 YEARS

JUST CG I CG 2 TG

PRE POST PRE POST PRE POST

I 11 4 3 2 7 6 .

II 314 310 308 264 271 120

III 35 46 49 94 82 234

Children in the two control groups produced few proportional justifications in the

pre- and post-test. However, after training, Group 3 (TG) children offered more
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proportional justifications than in the pre-test. Kolmogorov-Smimov analyses revealed that
the frequency of the justification types differs significantly between groups in the post-test
(TG vs CGI: p<.01; e TG vs CC2: p<.01). This was because Group 3 (TG) children gave
more proportional justifications than the children in the control groups.

DISCUSSION AND CONCLUSIONS

The main conclusion derived from this experiment was that children as young as 6
years can be taught to make proportional judgements. The use of 'half in part-part terms
seems to be an important step in helping young children to reason proportionally.

The training procedure improved performance in both ways: number of correct
responses and number of proportional justifications. It is interesting to note that the
proportional justifications were established in part-part terms by comparing the empty
space to the space occupied with water. This occurred because in the task used for training

children was shown how to compare the black part of the rectangles with the white one.
Hence, children tranfered what they learned in a situation to another. We may say that the
training procedure led children to represent the proportional relations in part-part terms.
This result is in agreement with those reported by Singer & Resnick (1992) that 'children's
representations are generally based on the parts'(p: 244).

It is important to note that children had arrived at the task with some understanding
of proportions (see Spinillo & Bryant's study) and that the training procedure had drawn
their attention to establish the first-order relations in part -part terms by using the 'half
boundary in a task (fullness) that in the original study invited to part-whole forms of
solution. Prior training, in Bruner & Kenney's fullness task children paid attention to the
whole (volume of the container) rather than to their parts (water and empty space). This
occurred because the question about the fullness of the glasses invited children to treat the
problem in part-whole terms. This probably made the task difficult for them. However, after
training, children were able to adopt part-part relationship to solve the task. This helped
children to reason proportionally by comparing the water with the empty space, as it can be
seen in the proportional justifications children used in this study. As stressed by Spinillo
(1990) and more recently by Singer & Resnick (1992), it is probable that many proportional
problems may easily be solved by means of part-part relations.

Of course one must be cautious about generalizations: other tasks which involve
coordination between separate non-complementary dimensions (e.g., balance scale,
projection of shadows, speed problems, best buy problems) are not open to solution by part-
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part relations. Thus, this type of training is effective in tasks in which the two parts that

form a whole can be diretly compared. This study leads to a new way of looking at
proportional reasoning and this might provide some educational implications for the

teaching of proportion in elementary school.
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A FIFTH GRADER'S UNDERSTANDING OF FRACTIONS AND PROPORTIONS

Tad Watanabe Towson State University, USA
Anne Reynolds, University of Oklahoma, USA

Jane Jane Lo, Cornell University, USA

This paper reports an analysis of a child's action in a study that investigated
relationships between understandings of fractions and proportional reasoning
ability among fifth grade children. Katie's understanding of fractions
influenced her ability to deal with proportional tasks. However, she was also
capable of solving problems that involved proportional relationships without
using fractions. This finding raises questions concerning the way current
school mathematics curricula are organized.

Introduction

Children's understandings of multiplicative concepts such as multiplication and

division operations, fractions, ratios, and proportional reasoning have long been the focus of

mathematics education research. In recent years, more and more studies have investigated

children's informal understandings of these concepts. The findings from the extant research

indicate that children's rich mathematical experiences have not fully been taken advantage of

as we teach these concepts in schools.

In an earlier study, four second grade children's understandings of simple fractions

such as one-half was investigated with a specific focus on children's unit concepts.

(Watanabe 1991, in press). According to the study, young children's understanding of

simple fractions is influenced by their unit related concepts. More specifically, children's

schemes for coordinating units appeared to have an important influence on their

understandings of fractions. In addition, it was also reported that children's meanings of

fractions were closely tied to contexts in which fractional quantities were needed. As a

result, some participants held contradictory meanings of fractions in different settings without

experiencing cognitive conflict.

In a separate study, two fifth grade children's problem solving strategies were

investigated as they engaged in both routine and non-routine proportion problems (Lo and

Watanabe, 1993 a & b). It was found that these children, and many other children who

participated in the preliminary stage of the research, were able to solve proportion problems

using a variety of strategies. However, these children's problem solving strategies were
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influenced by, among other things, their understanding of fractions.

In order to further investigate relationships between children's understanding of

fractions and their proportional reasoning ability, research was conducted involving fifth

grade children. In this paper, an analysis of the problem solving activities of one of the

participants in this invdstigation, Katie, will be presented.

The Setting

The research involved 16 fifth grade children, 7 boys and 9 girls, attending a

suburban public elementary school in a Mid-Atlantic state in the United States of America.

Based on their performances on the first interviews, 6 children, 2 boys and 4 girls, were

asked to participate in two additional interviews. Katie was one of the girls who were asked

to participate in the follow-up phase.

Tasks

The analysis of four tasks posed during the first interview will be presented. In the

Cuisenaire rod task, each participant was given several Cuisenaire rods: 15 white (I cm), 8

red (2 cm), 5 light green (3 cm), 6 purple (4 cm), and 2 dark green (6 cm). After the

children were asked to compare some rods, they were given three pictures, one at a time.

The children's task was to find how many light green rods would be needed if they were to

cover the whole picture only using light green rods. Five light green rods provided were not

sufficient for covering each picture, and the children were instructed not to re-use any rods.

The second' part of the task involved the following question: (shown a picture similar to the

three they had worked on) Suppose this picture needed 27 red rods to cover. Can you find

how many light green rods would be needed, without covering the picture?

The half-shaded task was similar to common textbook exercises. The children were

shown 16 different partially shaded designs and asked to select those that were half-shaded.

However, many of the figures involved unusual partitioning patterns (see Figure 2 for

examples). The children were then asked to justify their selections.

The one-half cookie problem involved three shapes that were obtained by partitioning

three congruent squares in three different ways, shown in Figure 1. The interviewer

demonstrated that two copies of each shape could be arranged to cover the identical square.

They were then given one copy of each shape. The question was then posed: If these three

were your favorite kind of cookies, which one would you pick if you were very hungry but
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you were allowed to have only

one. If the participant responded

by selecting one of the three

shapes, s/he was then reminded

of the initial demonstration. The

interviewer then asked the

children if that information

helped them decide which one of

the three pieces were the largest. problem.

The comparison of shares

task was adapted from Lamon (1993). Each question involved one group of boys and one

group of girls getting different numbers of pizzas. The participants were to select persons in

which group get more pizzas when they were shared equally within the groups. The

combinations of numbers used were: (1) 3 boys with 1 pizza vs. 7 girls with 3 pizzas, (2) 5

boys with 2 pizzas vs. 9 girls with 4 pizzas, (3) 5 boys with 3 pizzas vs. 7 girls with 4

pizzas, and (4) 16 boys with 5 pizzas vs. 8 girls with 3 pizzas.

Case Study of Katie

Figure 1 Three shapes used in the one-half cookie

Observations

On the Cuisenaire rod task, Katie was able to use the many-as-many coordination

(Watanabe, 1991). Throughout this task, she used the relationships 3 purple rods = 4 light

green rods and 3 red rods = 2 light green rods. This type of coordination was the most

sophisticated scheme identified among the participants of the earlier study.

When Katie was asked the second question, "Can you find out how many light green

rods would be needed if a picture needed 27 red rods to cover?", she immediately responded

that it could be figured out. When she was asked to proceed, she began by creating 9 groups

of 3 rods. The three rods in each group were not necessarily of the same color. Then the

following exchange took place:

Katie: Nine. And one left over. I did 27 into 3 is 9. [Katie started with 28 rods by
mistake.]

Int: With no leftover, right? 3 times 9 is 27 [removes the extra]. So, how many
light green rods?

Katie: Nine.
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Int: Why?
Katie: Because ... No, wait, no not nine. It will be ... about 4.
Int: Why?
Katie: Because if you divide this in half [draw an imaginary horizontal line to

separate 9 groups into two], because each 3 is 2 green, that will be four and
one (group) leftover. 5 if we had 10.

Int: I'm not sure why you are dividing.
Katie: Because; umm, 3 red blocks are 2 green blocks. So, this (one group) is like 2

green blocks. So, there were nine groups, and they will have to be split in
half for 2 [a little perplexed look].
So, [take 3 red rods] three of these are equal to...

Katie: 2 of these (light green).
Int: So, each of these (groups) is worth 2 green ones. How many is that

altogether?
Katie: 18?
Int: Is the answer 4 or 18?
Katie:, 18.
Int: Why did you change your mind?
Katie: Because, if 27 red blocks cover the whole thing, then there will probably have

to be a little less green blocks because they are, red blocks you need more of
them. They are small. Green blocks, they are bigger and take up more space.
So, you are not going to need as much.

Katie's initial response was given with confidence. Her immediate action to create 9

groups of 3 blocks shows that she had a clear goal in mind. Furthermore, the fact that she

did not use 3 blocks of the same color in each group indicates that she was operating with

numbers as mathematical objects for her. However, once she had constructed the 9 groups,

she appeared to lose sight of her goal; she was unsure of what to do with this relationship.

Even though she was able to say, "three red blocks are two green blocks," she did not use

the relationship successfully. It is not clear why she decided to divide 9 by 2 once she

realized that the answer of 9 did not make sense. However, it is clear that, by the end of

above exchange, she had constructed more sophisticated meaning for the task, including

the inverse relationship between the sizes of rods being used to cover the picture and the

numbers of rods that would be needed.

On the half-shaded task, she initially picked all half-shaded figures except three,

see Figure 2. While explaining why the pictures she picked were half-shaded, she often used

the justification, "if you fold the picture along the line they (the parts) will match." This
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metaphor (Lakoff & Johnson, 1980) did not

work with the three half-shaded figures she

did not pick. However as she began

explaining why figure (a) was not half-

shaded, she switched her metaphor.

Consider the following exchange: Figure 2 Three figures that were not selected
by Katie during the half-shaded task.

Katie: This (shaded triangle) would have to be here [pointing to the unshaded
square], but it has to be a square. And, it's different.

Int: If the picture is just this [cover the side that are partitioned by a diagonal], is
it half colored?

Katie: Yeah.
Int: What about if the picture is just this [cover the other side]?
Katie: Yeah.
Int: Why?
Katie: Because it looks like it splits right in the middle. If you cut it and turn that

over, it will fit. [emphasis added]
Int: What about the whole picture?
Katie: Yes.

When Katie switched her metaphor from "folding" to "cutting" (italics above), she

was able to determine the figure was half-shaded. It appears that the "folding" metaphor,

although it is dynamic, has a limited range of motions. The "cutting" metaphor, on the other

hand, gave her more freedom to move her image. As a result, she changed her answers and

decided both figures (b) & (c) were also half-shaded.

Katie's response to the half-cookie question was surprising, considering her rather

sophisticated responses to the earlier tasks. When she was asked which shape she would

pick, she initially chose the trapezoidal shape. However, when she was asked to justify her

choice, she decided that the triangular figure was the largest. When she was reminded of the

initial demonstration that two copies of each shape would form the congruent squares, she

concluded that it had no implication for her decision of which of the three shapes was the

largest. Even though she was successful in identifying half-shaded figures correctly, and

even though she was able to use sophisticated reasoning which reflected her understanding of

proportional relationships, she was not able to reason that all these shapes were one-half of

the congruent square, thus, equal in size. It is conjectured that her understanding of
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fractions were highly contextualized, and she did not construct fraction context for this task.

Therefore, she used more naive responses as her primary rationales.

Furthermore, it is conjectured that a part of the reason she did not consider this task

to be fraction related is that her understanding of fractions was based on a part-to-part

comparison. Even after she shifted her metaphor from the 'folding" metaphor to the

"cutting" metaphor, her intention was still to compare the two pans. If the two parts are

equal in size, then one of them represented a half of the whole. However, for Katie the

cookie task did not involve comparison of two parts. Since her meaning of one-half was

based on part-to-part comparison rather than part-to-whole comparison, this task, which did

not involve complementary parts, was not the setting for fraction related reasoning for Katie.

Katie's responses to the comparison tasks also showed interesting contrast. For

example, on the first task, she used the relationship 3 persons to a pizza as the basic pattern

of sharing. As a result, the group with 7 girls and 3 pizzas will be left with one whole pizza

for one person. She was able to reason from this that the girls would get more.

For Problem 2 (5 boys with 2 pizzas & 9 girls with 4 pizzas), she decided that the

girls would get more. When she was asked to justify, she again assigned 3 girls to a pizza,

leaving one whole pizza. She then said the girls would get one third of a pizza plus one of 9

slices from the last pizza. The following exchange then took place:

Int: How do you know they (girls) get more?
Katie: Well, you could, umm... They (boys) will get 2/5 of a pizza, and they (girls)

will get ... [changed her mind, and decided the boys get more] Because they
(girls) will get 1/27. Because of 1/3 of a pizza and a get 1/9. It's not 1/27.
It is 1/12, is less than 2/5.

Int: How did you know they (boys) get 2/5?
Katie: Because it's 2 pizzas, and each person got 1/5 from this pizza, and 1/5 from

this pizza.
Int: What about these (girls)?
Katie: Well, if there were 9 girls, and that can be divided evenly into 3, then they

will each have ... If you divide one pizza into 3, then you have 1/3 of a
pizza, ...

Int: What if there was only 1 pizza? How much would each get?
Katie: (immediately) 1/9.
Int: What if there were 2?
Katie: 2/9.
Int: So, if there were 4?
Katie: 4/9.
Int: Not 1/12?
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Katie: Hmm.... They will get 1/12 of a pizza. Because if there are 9 girls and 4
pizzas, each will get 1/3 of a pizza, and 1/9. And that will be, hmm... 2/12.

What is significant in this exchange is that her reasoning became less sensible when

she began using fraction terms. She was able to determine the boys' shares to be 2/5 of a

pizza. However, when the same reasoning led her to the girls shares of 4/9, she still decided

that 2/12 was the correct share. When Katie encountered a previously unfamiliar problem

situation, she resorted to an algorithmic (faulty) approach of adding two fractions.

Moreover, Lamon (1994) showed that, as children develop more sophisticated

mathematics, their partitioning strategies will utilize larger "units" of sharing. Katie's

strategy of 1/3 plus 1/9 is certainly efficient. However, it appears that, to find the total

share, this approach created a mathematical problem which was beyond the constructions she

had made at this point. It is curious that she rejected the answer of 4/9 as the shares for the

girls even though she used the equivalent reasoning for determining the boys' shares. It is

conjectured that 1/9 was not a unit for Katie, thus, she was unable to operate with 4/9

constructed by joining four 1/9's.

Discussion

There were several significant moments in Katie's first interview. The importance of

the "cutting" metaphor in the half-shaded task showed the importance of partitioning

activities in fraction experiences. If children are to develop such reasoning, they must have

experiences with partitioning themselves. The insufficiencies of pre-partitioned figures that

dominate typical textbooks /workbooks have been pointed out by other researchers, and the

current study provide additional evidence.

Katie's response to the half-cookie problem shows how complex an understanding of

fractions is. Katie was, by no means, an exceptional case. Of the 16 participants, 7 other

students also responded similarly. Moreover, all of these children were able to identify

correctly almost all half-shaded figures. Further studies are needed to investigate this

inconsistency.

Finally, Katie's ability to reason proportionally, and her inability to do so when she

began using fraction language, raises an important question concerning school mathematics

curricula. The typical sequence of topics in school mathematics begins with whole numbers.

It then moves on to fractions and decimal numbers. Ratios are then introthiced, while

3 206

214



proportions are usually discussed quickly and with the main focus on the procedure (cross

multiplication) of solving proportions. The observations of Katie's problem solving activities

reported in this paper suggest that children are capable of reasoning proportionally even

before they receive any formal instruction on ratios or proportions. In addition, it appears

that some children may be able to reason proportionally even without fraction language. In

fact, it may be possible for children to construct fractions as ratios based on their problem

solving experiences. Most of school mathematics curricula focus on the part-whole

interpretation of fractions. A few experimental programs utilize the operator construct of

fractions. However, few, if any, curricula begin with proportional reasoning. The

observations reported in this paper suggest that problem solving experience involving

proportional relationships may become a basis for constructing fraction knowledge. Further

research of this approach may be fruitful.
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PARTICIPATORY, INQUIRY PEDAGOGY, COMMUNICATIVE COMPETENCE
AND MATHEMATICAL KNOWLEDGE IN A MULTILINGUAL CLASSROOM:

A VIGNETTE.

Jill Adler: Education Department. University of the Witwatersrand, Johannesburg.

An inquiring participative pedagogic code and the demands it makes on pupils'
communicative competence can, at times, inadvertedly turn in on itself, validating diverse
pupil perspectives at the expense of developing their mathematical knowledge. In practice,
such effects can be obscured from teachers. In this paper, one incident with one teacher,
and her reflections on her teaching, are woven into an analytic narrative vignette (Erickson,
1986) that instantiates and illuminates the above claim.

INTRODUCTION

An inquiring participative pedagogy is often driven by democratising intent, with twin goals
of moving away from authoritarian approaches to teaching, learning and knowledge, and
improving socially distributed access and success rates. That such pedagogy can turn in on
itself, reducing mathematical knowledge development, highlights what in South Africa is well
know as the 'democracy-development' tension'. This tension permeates key policy
documents (ANC, 1994; NEPI 1993) that now frame the process of reconstruction and
development in South Africa.

Policy research has had centre stage in educational research activity in South Africa since
1990. What is interesting and pertinent to this paper is that often, the impetus for education
policy directives is informed by two poles: abstract research on the one hand, and the
common sense of relevant stakeholders on the other. This is not to deride either, but to signal
that the research which I will describe here, brings a third and important dimension.
Through an in-depth analysis of the actions and reflections of one teacher, and a good teacher
at that, we gain insight into the complexities of teaching mathematics in multilingual
classrooms in ways that embrace democratic ideals. Insight, that is, into the very real and
concrete challenge in education of working the democracy-development tension.

While this paper is clearly situated in and motivated by the South African change process,
its problematic is more widely shared. In many and diverse contexts, mathematics teachers
face multilingual classes as well as the challenge of developing approaches to learning,
teaching and knowledge appropriate to rapidly changing global and social processes.

SOME RESEARCH BACKGROUND.

The vignette is part of a field research study that seeks a critical understanding. of the
complexities of teaching mathematics in multilingual classrooms through teachers' knowledge
of their practice. It is broadly underpinned by a social theory of mind, and draws on the
theoretical work of Vygotsky (1986, 1978), Lave (1988) and Lave and Wenger (1991), and
Bernstein (1993). It investigates both what teachers in multilingual contexts say about their
work and what they do. The design is qualitative and interpretive and involves a strategic
opportunity sample (Rose, 1981) of six teachers, two each from three different kinds of
multilingual contexts in South Africa. Data collection has been through initial individual
semi-structured interviews, video-recording and observation of each teacher for at least two
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hours, individual unstructured video-reflection interviews and three follow-on group
workshops. Analysis has entailed working both across what the six teachers say and do, and
then also within each teacher'.

Much has been written about the complexities of analysing, validating and reporting
quali'qtive field research (Erickson, 1985; Rose, 1982; Hi'chcock and Hughes, 1989;
Maxwell, 1992, Woods, 1985). Erickson recommends a 'leap to narration' as a way of
stimulating analysis with the 'analytic narrative vignette' being the foundation of an effective
report of such research.

The vignette presented here is focussed on a key aspect of the working knowledge of one
teacher in this study - Sue' - who wants her pupils to see mathematics as 'something you
can talk about' and 'have your own ideas about' and 'not something you just do'.
Mathematics is not simply about getting answers it is also about 'asking questions'. Her
pedagogical approach to the development of mathematics knowledge is a participative,
interactive and inquiring one. Her classroom is both multilingual and communicatively rich.

A VIGNETTE; REFLECTIONS AND AN INCIDENT

The incident' From stretching to labelling angles,

Joe, Std 6, is 'reporting' to the class, his explanation for a worksheet question 'Is it possible to draw
a triangle with two obtuse angles?'

Joe: (While talldng, he draws the following two triangles on the board)

(."44 Aql
I said all the A's must be like more than .. they must, uh; be the biggest in the
triangle, urn, so that if, uh, if this A here, say, is like 89, .. and then these are say
37 and (mumbling to himself, ya, ya) 44, ya. And then in this one, number two, ..

Vo_.
it will be an obtuse angle. I said 91 and this is 44, .. and this here is 46, no

B
(crosses it out and puts 45 all labels' are outside the triangle). And I said like if
A, if A is going to stretch, .. if A is going to stretch (pointing to 91) then these two
angles here... if it has to stretch then these two, like these two they are going to
contract.

89

(He draws another 90 degree angle below, and re-explains.

If this here, if this is A, if A is here now miss and if it has to stretch, like these
two we gonna have to (0) them both ... if this is 90, and you if you, if you, if it is
gonna (0), turn to be lets say 110 or something, .. (drawing the obtuse angle) then
this one here (pointing to top angle) will be smaller than it was before, it was before,
so, so if it was, say, 40 here then it is going to be 30 here, uh .. then A is going to
be taking that 90 degrees, uh, that 10 degrees, let's say B had ... uh uh if if if one
angle stretches then, uh, the the two angles, the two other angles have to contract.

Sue: OK what do other people think? Any questions? Rose?

Rose: Isn't that triangle the same as the other one if you measure (0)

Joe: I was just doing an example, I forgot what angles I was using in my book 1] but p they are
supposed to add up somewhere near to 180 degrees [].
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After some teacher-mediated interaction between Rose and Joe during which Rose is able to clarify
that her question is whether the one triangle is the 'same as the other turned upside down', Sue says:

Sue: I think Joe maybe the first problem is that you haven't shown these angles on the picture and
lots of people do this - they write the angles outside the picture. OK Now you know what
you mean and I know what you mean and maybe some people know what you mean. But to
be clear (she writes the angle sizes inside the triangle), do wat. Put it inside [II No'w, are these
two triangles the same just turned upside down?

As she continues interacting with the class to ensure they understand that while the-triangles 'look the
same', they are not. So, Joe in not 'wrong'. The bell rings but she continues:

[] it does not really matter what they really measure - we still get what he is trying to tell us
because he has shown us and example of what he has done we will come back to this
tomorrow.

At the outset, ie while observing the lesson in process, this episode caught my interest.
Firstly, I was impressed by Joe's dynamic, relational conception of the angles of a triangle -
how angles change in relation to each other. Yet he struggled to explain himself clearly,

to find the words and illustrations to express his ideas publicly. Rose's question and Joe's
response suggested that they did not understand each other and Sue's mediation focuses on
clarifying Rose's question, and then on how to label angle size clearly, on estimated angle
values in the diagram, and away from the actual mathematical content of the task - away
from 'stretching' angles to labelling them.

In my field notes that day I noted this as an instance of problematic communicative
competence - of a difficulty with mathematical English - so as to ensure I discussed it in the
reflective interview with Sue.

After watching the video myself prior to the interview (space constraints preclude providing
adequate evidence), I was interested that while Joe battled to explain himself to the class,
earlier he had managed to convey his reasoning - albeit with lots of particularist language and
pointing (in a restricted code in Bernstein's terms) - to both Sue and his partner. Sue is not
entirely happy with his explanation, whether 'it covers all possibilities' and suggests he tries
to 'start with an obtuse angle like 125 degrees'. In the recap in the lesson the next day,
Joe's partner volunteers and summarises his reasoning quite clearly to the class. Sue's

question about starting with 125 degrees does not resurface.

From my perspective as researcher, this incident promised to provide insight into (1)
differential communicative competence within and across learners and (2) how teacher actions
are shaped by problematic communication i.e into a nest of problems pertinent to the
research project as a whole.

Sue's opening point in her reflective interview is:
(She, like me, had looked at her video before this interview)

... the thing that worries me the most is that I am not sure whether, I am not sure to
what extent it helps them learn. I think that talking to each other is not
unproblemmatic. I think a lot of the kids don't listeb. Maybe they are.ton young.
I think. You can see it with the questions [] they'll ask a question and say I dons`
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understand and then the one who is up will try to explain and it doesnt really help but
they are being polite and they are not quite sure and they say 'OK fine'. I am not
sure they understand. (VI6, 7-28, my emphasis)

As we observe the video she elaborates:

,iith the Std 5's, because their language is much weaker, and they work in partners, I
encourage them to first try it and then they talk about it - but I do question the way they
talk to each other ... to what extent they really challenge each other If you are not sure
of your own ideas then it is hard to challenge and if they are not great at explaining, they
don't understand each other. I encourage them to do it, but often they don't.

(VI6, 234-259, my emphasis)

She particularises her concerns later in the interview when we view the incident presented below:

He doesnt really answer her question. They are not communicating - and that
happens a lot! He can't hear her question and she can't hear his explanation. (VI6,
641-644, my emphasis)

and comments derisively on her actions:

now I am deflecting more (VI6, 651-652)

Sue's opening general comment pertains to the incident mirrors my observations and
concerns about pupil communication and her 'deflecting', but it is I, the researcher, who
brings it into focus in the unstructured reflective interview. The study is concerned with
teachers' knowledge. So, it is pertinent that Sue and I are not similarly interested by this
incident, though we share concerns that it illuminates. The incident thus could stimulate
discussion through differences between teacher and research interests and orientations.

THICKENING THE DESCRIPTION:
Contextualising the incident and reflection

(Supporting data will be in the full version of this paper).

Sue's school is well-resourced. The vast majority of pupils are black and not native English-
speakers. Most teachers (including Sue) are white and English-speaking. A culture of
professionalism and inquiry permeates school and staffroom. Sue's notions of teaching and
learning are thus supported in her school.

The incident occurs in a 37 minute lesson. For 23 minutes, the 16 pupils work in pairs on
part of a worksheet designed to elaborate the concept of the angles of a triangle. One task
is: Draw a triangle with 2 obtuse angles. If this is impossible, explain why. Joe's
'stretching angles' occurs in the 11 minutes devoted to 'explaining to others' what they had

done.

While pupils are working on the worksheet, Sue gets round to the whole class. Her
interaction, is predominantly in the form of questions that encourage learners to articulate
their thinking, present their reasoning and to question each other. In her individual
interactions she also pushes Joe and Rose on their responses: She suggests Joe tries starting
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'with a triangle that has an obtuse angle', say 125 degrees and asks Rose if her explanation

will hold 'in all cases'.

In Lave and Wenger's (1991) terms, there is opportunity for both talking about and within
the mathematical practices in this class. A code of enquiry is evident in Sue's actions and

in pupil uttennces. In addition she fosters pupil-pupil interaction. Pv,,ils interact with each

other while on task, and then during report back. Pupils have learnt that they are expected

to ask themselves why, to explain and ask why of others and to interact verbally with each

other. In contrast to many mathematics classrooms where I-R-F interactions and teacher-

initiated questions predominate and, in Campbell's (1986) terms, pupils 'go for an answer',

Sue's lessons are better described by pupils 'going for a question'.

Diverse pupil orientations to the task emerge. Some, including Rose, start with an obtuse

angle and then try to draw a second obtuse angle, and so forming a quadrilateral, not a

triangle. Others have the more deductive explanation: if two angles are more than 90
degrees, there will be more than 180 degrees and so a triangle is not possible. However,
there is differential competence across pupils in exressing their thinking in written and
verbal form. Sue knows this, and says she sometimes avoids asking pupils who can't explain

clearly since they confuse others and that there is obviously a hidden message here for such

pupils.

During report back time, Rose also reports her explanation. As indicated above, it is

different from Joe's. Again space limitations here preclude evidencing that she presents the

product, the whole quadrilateral at the start, not the process of her thinking. Joe asks her

a question and as with his report, they struggle to communicate. No other report is given.

In the interview, Sue talks about her interactions with Joe. She feels his explanation was not

as general as the others that is why she pushes him to try starting with 125 degrees. So

Sue has a notion of what a more generalised and hence more mathematically powerful

response is. In the class, it is implicit in her individual interactions with Joe and Rose. But

is does not surface publicly for the whole class during report back.

DISCUSSION

In the complexity of teaching mathematics in a multilingual classroom with a participatory,

inquiry code and the demands it makes on communicative competence, we see that:

(1) Pupils sometimes struggle to formally explain their thinking.
(2)

(3)

Pupils are often unable to communicate and engage each other effectively their

questions are often confusing and restricted to points of clarification.
These communicative difficulties shape Sue's actions to the detriment of pupils'
mathematical knowledge - deepening notions of generalisation are not made publicly

available.

Sue is aware of communication difficulties and on reflection sees her 'deflection' to
labelling. To what extent can she be aware of their effects?

The discussion of these issues draws across disciplines from the work of Pimm (1992, 1994)

on reporting mathematical investigations, from Vygotsky (1978, 1986) and particulalry
Wertsch's (1984, 1991) elaboration of the Zone of Proximal Development (ZPD) and briefly
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from Bernstein pedagocic codes (1993).

An obvious explanation for Joe difficulties explaining his thinking, is that he is not a mother
tongue English-speaker. His task is thus one of double. attention to a new mathematical
idea and to a language he is still learning. Sue is aware of this but 'doesnt know how to
move him on - I oont know how to develop the language'.

However, Pimm's (1992, 1994) work suggests that this the issue is not simply about access
to English. Reporting mathematical thinking, even for mother-tongue English-speakers, is
not a simple process because of the linguistic demands entailed. 'Skills of reflection and
selection' and a 'sense of audience' are important to successful report back. While Joe
displays a sense of audience by trying to recount the process of his thinking, his loose
selection of angles is confusing. Rose has less sense of audience in that she does not convey
the process of her thinking.

Sue is, to some extent, aware of the issues of selection and audience. In the interview she
talks about needing to assist pupils structure their explanations, and her 'deflection' is about
how to draw better so that others can understand you. Joe's reporting skills are important
but not the key issue here.

Pupils in this class struggle to hear and engage each other. Sue's insights from her
reflections on her practice are very illuminating. What she understands is how hard it is for
them to step out of their own ideas and frames to engage others' mathematical thinking. The
question begging is: Can pupils have the vantage point that one expects of the teacher i.e.
a vantage point from which to interpret and engage a range of ideas different from your own,
and so deepen their mathematical knowledge?

As hinted at earlier, Wertsch's elaboration of the Vygotsky's ZPD explains Sue's insights.
Wertsch distinguishes three components to functioning in the ZPD: situation definition;
intersubjectivity and semiotic mediation. It is when situation definition is not shared that
mediation is required for intersubjectivity to be esablished. Joe and Rose do not share the
same situation definition. They start differently. Their orientations to the task, their objects
of attention are different and they struggle to see past their own to engage with each other.
That is perhaps why we cannot fathom where their questions are coming from and why Sue's
insights are spot on.

There is so much potential for deepening pupils' mathematical knowledge in this situation,
precisely because of Joe and Rose's diverse approaches. But it requires Sue to mediate these
differences publicly, to bring of attention these different orientations and starting points and
their relative mathematical strengths. For here, discussion is not about who is right or
wrong - both approaches make sense and answer the question - it is about how they are
similar and different and perhaps too which is the better mathematically.

The issue, however, is that Sue would like them to engage each other. She wants them
to ask each other more effective questions, perhaps like those she asks Joe and Rose as she
interacts with them individually while they are on task. Perhaps the assumption and hope
is that deepening mathematical knowledge will happen through this pupil-pupil engagement.

The irony here is that. Sue's desire for pupils to engage is simultaneously part of and
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undermined by participatory pedagogy - and this she does not see! She deflects to teach

labelling and does not refocus back onto the mathematical substance of the task. An

interesting question to pose is whether this deflection is a choice and then not refocussing a

choice? It is arguable that her participatory project is overdetermining and precludes her

from focussing on the content, from mediating across differences and from evaluating the

substance and content of what the pupils offered. All she can do is validate and clarify what

they offer. Mathematical possibilities are lost.

In this we can see that pupils' difficulties engaging each other are perhaps more than

metacognitive on the one hand, and their ability to express their mathematical thinking on

the other. Bernstein's (1993) analysis of pedagogic codes suggests that when pupils do not

perform in ways expected, it is less their inherent ability and more their not 'realising' what

it is they are meant to do. If Sue herself does not engage (mediate and evaluate) publicly

with the substance of their ideas, her desire that her pupils do so may continue to be

thwarted.

CONCLUSION

A culture of meaningful inquiry, pupil-pupil interaction and multiple perspectives on
mathematics is encouraged and achieved in this class both while they are working on a
mathematical task and when they publicly report on their work. This is no mean
accomplishment in mathematics. The practice includes both talking within and about
mathematics. However, it is precisely when perspectives are not shared that ..

public/ whole-class pupil-pupil communication takes on form (it looks interactive and
engaging) rather than substance (questions are restrictive and confusing). The strong claim

is that, at times, the pedagogical code over-determines the mathematics. The unintended

consequence of this is to impede possibilities for more demanding intellectual engagement

with the mathematical task at hand and hence the development of mathematical knowledge.

The implication for teaching is that while the withdrawal of the teacher as continual
intermediary and reference point for pupils enables this classroom culture, her mediation is

essential to improving the substance of communication about mathematics. That is, both are

required, and managing the tension, finding the balance the challenge!

This analysis troubles me: in South Africa this is the year of 'delivery' with a new
government under pressure to right the wrongs of apartheid. We might well see the balance

tip in favour of development. This would be a tragedy, not only because of the gains Sue

has made in her classroom, but because democracy and development are inter-related - the

one is dependent on the other. It is in Sue's classroom where participation and diversity are
encouraged and enabled, that possibilities for exciting mathematics lie. We need to continue

to work towards this happening.
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NOTES

1. Democracy implies participation and is linked to equity and redress; development implies growth and
improvement.

2. For fuller description of the research, and the initial interviews, see Adler (1995)
3. All names (teacher and pupils) have been changed.
4. Key to transcript symbols:

(bracketed italics: researcher commentary within an extract from the data
(0) - inaudible uttemace

- utterances edited out
- short pause
- longer pause
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PEER INTERACTION AND THE DEVELOPMENT
OF MATHEMATICAL KNOWLEDGE

Karin Brodie
University of the Witwatersrand

This paper reports on a qualitative study of a group ofjuniorsecondary pupils collaborating

on a mathematical task in their mathematics classroom. The pupils' interaction is both
beneficial and problematic in relation to their development ofmathematical knowledge. This

can be understood using Vygotsky's construction of the Zone of Proximal Development as a

relationship between scientific and spontaneous concepts and between teacher and learner:

It is argued that teaching needs to be conceptualised as integral to learning for peer

interaction to be most beneficial.

1. MOTIVATION FOR THE STUDY

The study is located within a context of potential educational change in South Africa. Its

purpose is to investigate ways in which- small-group work in mathematics can contribute to

classroom practices which are "learner centred, non-authoritarian, and which encourage the

active participation of students in the learning process" (ANC, 1994: 69).

Initial research influences on the study include mathematics education research which argues

that interaction in small groups can increase possibilities for conceptual growth (Wood and

Yackel, 1990; Hoyles, 1985), as well as research which has shown that teachers' control over

knowledge and discourse in classrooms can be detrimental to learning (Edwards and Mercer,

1987; Barnes, 1969). These studies suggest that peer groups, which provide more equality and

allow pupils more control, may be preferable to teacher-directed learning.

On the other hand, teachers working with small groups are continually confronted with

tensions between allowing pupils control over the learning situation, and the development of

mathematical content knowledge. This is not only a pragmatic tension. Vygotsky (1986)

distinguishes the development of systematic knowledge from spontaneous knowledge, and

argues that formal instruction is necessary for the former. This paper argues that a conception

of teaching as making connections between spontaneous and scientific concepts can help

resolve this tension.
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2. METHODOLOGY

The group under investigation consists of three Std 7 (14-15 year old) pupils, two girls and

a boy. The group was chosen because they were observed to interact well together. They were

part of a class of 17 pupils, divided into four groups.

The pupils were given a worksheet which required them to investigate certain properties of
area and perimeter on a geoboard. The work lasted for a week (6 fourty-minute lessons). Each

group in the class was was audio-taped for the whole week. Transcripts were made of the

tapes of the chosen group. The transcripts constituted the major source of data for the study

and were supplemented by classroom observation, the pupils' rough notes made while they

were working on the tasks, and their final, individual answers to the worksheet questions

handed to the teacher at the end of the week for assessment.

An in-depth, interpretive analysis of the transcripts was undertaken. Initially, I attempted to

categorise regularities in the pupils' talk and interaction, but this proved unproductive, since

I needed to capture the development of the pupils' mathematical knowledge in relation to their

interaction during the week. So I focused the analysis on an unexpected method which the

group developed to calculate area. I charted the progress of the method for the duration of

the week, documenting how it was produced and maintained through the interaction, and the

consequences for the development of the pupils' mathematical-knowledge.'

3. A METHOD TO CALCULATE AREA

Most of the group's work centred on an innovative, yet problematic method to calculate area.

The method, in its most general form can be described as follows (see figure 1):

For a complicated shape, ie: not a rectangle
1. Divide the shape up into squares or rectangles, and triangles.
2. Calculate the areas of the rectangles.
3. Count the hooks in the triangles, including those on the perimeter and inside the triangle,

and make a rectangle with the same number of hooks, also on the perimeter and inside
the rectangle.

The analysis draws on various parts of the transcript. Space limitations prevent their
inclusion here. The complete transcript can be found in Brodie, 1994.
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4. Calculate the area of the rectangle formed in this way. It will have the same area as the

original triangle.
5. Add up the areas found, to get the area of the original shape.

(a)

The pentagon is divided
into a rectangle and

triangles.

LiA
. .

(b)

The triangle A has four
hooks and is

transformed into a
square, so it has area 1.

Figure 1

. .

.A
i

(a)
(b) (c)

Triangle C with six hooks is Triangles with four A triangle with five'

transformed into a rectangle
with six hooks and so is

considered to have an area of 2.

hooks with areas of 1. hooks and area xl.

Figure 2

Step 4 of the method (as I have articulated it above) is problematic, as it is based on a

mistaken notion of conservation of area (figure 2a). For most of the time the group works

with a restricted version of this idea, that triangles containing four hooks can be transformed

into a square and thus have an area of I (figure lb). This version is found to work in almost

all cases (figure 2b). The limitation that the hooks inside the shape are included is important.

The triangle in figure 2c does not have an area of 1 because it has 5 hooks, not 4.
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In developing the method the pupils engage in mathematical activity including: forming

hypotheses; checking the method against particular shapes; modifying and adapting it in the

face of new evidence; defending it against challenges; and using it to help them begin more

difficult tasks. The pupils also experience emotions as they develop their method - joy and

excitement when it is successful; appreciation of their own work; and frustration and

disappointment when they experience setbacks (see Brodie, 1994 for a more detailed

discussion).

On the other hand, the mathematics that the pupils develop is seriously flawed, and, more

seriously, their mistaken notion of conservation of area is not dealt with in any substantial

way throughout the week, neither by the group, nor by the teacher. The group's inability to

deal with their problems on their own arises from inequality in their interaction and their

inability to negotiate intersubjective meanings. This is discussed elsewhere (Brodie, 1994).

The teacher's interaction with the group is discussed here.

4. TEACHING AS "FACILITATING LEARNING"

The pupils spoke to the teacher predominantly about triangles with four hooks which can be

transformed into squares and which have an area of 1 (figure 2b). She was intrigued as to the

apparent validity of their idea in most of these cases, because she knew that it could not be

generally true She tried to engage the pupils in thinking about the general validity of their

theory, by providing counter-examples and asking for justification of their ideas. She did not

tell them directly that part of their method was wrong, or suggest ways out of the difficulty.

Her interaction can be described as trying to facilitate thinking in the pupils, in the hope that

they might develop their ideas further, or change them, rather than giving them direct

guidance. This approach is consistent with the view which asserts that direct teaching is more

likely to inhibit learning than foster it, and that the teacher should attempt to suppress her

mathematisations in order to allow the pupils to develop theirs.

In the case of this group however, this teaching strategy allowed the pupils to continue to

work with their flawed method. The worksheet tasks and the pupils' interaction were not

sufficient on their own to enable the pupils to deal with their mistake and to move on to
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systematic notion of area. The transcripts show a number of instances where the teacher could

have provided more direct guidance for the pupils in order to foster such mathematical

development. A conceptualisation of teaching using Vygotsky's (1978) Zone of Proximal

Development (ZPD) will expand on this.

5. THE ZONE OF PROXIMAL DEVELOPMENT

The ZPD expresses a relationship between a learner and a more knowledgeable other. Vygotsky

(1978) defines it as:

"the distance between the actual developmental level as determined by independent
problem solving and the level of potential development as determined through
problem solving under adult guidance or in collaboration with more capable
peers." (1978:86)

Vygotsky posited the ZPD as a challenge to the Piagetian perspective that real learning can only

occur after the prerequisite development has taken place (1978). Rather, he considers instruction,

which is a teaching-learning relationship, to be essential for development. New developmental

levels are aimed for and attained with the teacher's assistance.

Central to the notion of the ZPD as it functions in schooling is Vygotsky's distinction between

spontaneous and scientific (or systematised) concepts (Vygotsky, 1986). Spontaneous concepts

are developed in, and derive their meaning from everyday activity and interaction. Scientific

concepts develop through formal instruction and form part of a knowledge system. Their

meaning derives from being part of this systein as well as from, instantiation in everyday

concepts. Systematised concepts permit flexibility of thinking and generalisation of meaning and

provide control and structure for unsystematised everyday concepts.

The relationship between spontaneous and scientific concepts is to be found in the ZPD.

Vygotsky writes:

"These two conceptual systems, developing "from above" (scientific) and "from
below" (spontaneous), reveal their real nature in the interrelations between actual
development and the zone of proximal development. Spontaneous concepts that
confront a deficit of control find this control in the zone of proximal development,
in the co-operation of the child with adults."

(1986:194, quotes in original, my brackets)
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The synthesis of spontaneous and scientific concepts forms true concepts (Vygotsky, 1986),

which are flexible, and meaningful in relation to individual experience and generalised systems

of knowledge.

It is clear that mathematical knowledge forms a system of scientific concepts2. However, children

develop many spontaneous mathematical concepts in everyday life. Research into everyday

concepts (Carraher et al, 1985) has shown that these concepts remain unseen, unheard, and even

blocked by school mathematics, and that a synthesis into true concepts rarely occurs successfully

in schools.

Small-group discussion is one way of bringing spontaneous concepts into the classroom.

However, the evidence from my study shows that this is not sufficient. Spontaneous concepts

need to be explicitly and carefully brought into connection with scientific concepts.

6. MAKING CONNECTIONS

The spontaneous area concepts that the pupils bring to the geoboard tasks can be seen in their

method. They divide shapes into smaller areas, they perceive a relationship between hooks and

area, and they think that a shape can be transformed while conserving area, as long as the
number of hooks remains the same.

The mathematical processes that the pupils engage in (section 3) can also be labelled
spontaneous, as they have not been explicitly and formally taught. The pupils use theprocesses

of generalising and specialising, forming hypotheses, and drawing conclusions from evidence.

However, they use them imperfectly. On a number of occasions they ignore contradictory

evidence, and this allows the perpetuation of the faulty method. For example, a serious challenge

is posed to the method, when the group cannot find a triangle with 7 hooks and an area of 2V2

2 Exactly what constitutes the scientific concepts of mathematics is contested. A detailed
discussion of the debates is beyond the scope of this paper. My assumption, consistent with
a Vygotskian perspective, is that mathematical knowledge is culturally and historically
constructed and situated.
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units' as predicted by the method'. The pupils do not make use of this contradiction, they are

wedded to the connection between the hooks and the area and this overrides the contradictory

evidence..

Different teacher intervention strategies may have critically affected the development of the

method and the pupils' conceptions of area. The value of contradictory evidence, the relationships

between general and more specific theories, the need for justification of their ideas, and the need

and role for a method, could all have been usefully discussed with this group. In this way, by

bringing the spontaneous reasoning that the pupils did engage in into contact with more

systematic mathematical reasoning, the teacher could have led their development. More direct

teacher challenges to the pupils' linkage of hooks and area, and their mistaken notion of

conservation of area, could have enabled the pupils to make progress with the area concept, by

giving them access to scientific concepts and forming a basis for the development of true

concepts.

This suggests that the teaching-learning relationship requires special consideration. In the case

of this group, a particular approach to teaching, that of facilitating learning with a reluctance to

intervene directly, did not enable the pupils to make progress. This suggests that a shift needs

to be made from viewing the teacher as only a constraining influence in learner-centred

activities. The teacher can and should be a powerful enabling influence, mediating and leading

conceptual development in smallgroup work. Teaching can and should be viewed as integral to

learning, rather than as a disruption of an otherwise spontaneous process. This requires a

reconceptualisation of teaching as both listening and talking to pupils, to bring their spontaneous

concepts into the classroom, and to give them access to scientific concepts, so that they can

construct true concepts.

3 The method was extended to include triangles which could not be made into a rectangle
(most triangles with an odd number of hooks), by allowing a half triangle at the end of the
transformed rectangle.
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INTERACTIVE COLLABORATION AND AFFECTIVE PROCESSES IN THE

CONSTRUCTION OF MATHEMATICAL UNDERSTANDING

Peter Howe, Noel Geoghegan, Kay Owens, Bob Perry

University of Western Sydney, Macarthur

This paper reports on how affective processes play a key role in the develo ment of
mathematical thinking. The study was part of a larger research project on the effects ofa
social constructivist teaching environment using a cyclical learning model based on
'experiencing', 'discussing', 'generalising', and 'applying' with undergraduate teacher
education students. Students were encouraged to collaboratively construct
understandings through small-group and whole-class discussion. All sessions were
student-led. Classes were videotaped and students' participation analysed. Comparisons
of pre- and post-course scores on attitude and belief questionnaires indicated an increase
in positive attitudes and beliefs. Interactive collaboration also precipitated heuristics
which supported positive changes in both affective and cognitive states.

Introduction
There is considerable research which establishes various forms of peer learning as an effective

method of learning (Gooding and Stacey, 1993). Research has also highlighted how affective

states can have a positive or negative effect on learning (McLeod, 1993, 1989). Positive emotions

can accompany construction of new ideas while negative emotions associated with a problem

blockage may result in students being upset or making wild conjectures (Wagner, Rachlin, &

Hensen, 1984, cited in D. B. McLeod, 1993). The learning environment within which the

curriculum is established is instrumental in assisting students to handle their emotions and develop

positive attitudes. Indeed, it is claimed that a class that shares their solutions and becomes a group

of validators will assist students to overcome negative feelings (Cobb, Yackel, & Wood, 1989).

It is impossible to "compartmentalise the cognitive aspects separately from the effective

aspects" of learning mathematics (Southwell, 1991, p. 1). Many teacher education students enter

university with negative attitudes towards, and low levels of, mathematics. In order to assist these

students, a constructivist approach to teaching and learning mathematics has been developed and

presented as an alternative to ones commonly experienced. The kg constructs of the approach are

built around an experiential learning cycle adapted from Jones and Pfeiffer (1975) which uses

principles of cooperative learning and the problem-centred approach of the Purdue Mathematics

Project (Wood, Cobb & Yackel, 1992). Diagrammatically, the Learning Cycle can be represented

as shown in Figure 1.
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Applying Expenencing

I i
Generalising c Discussing

Figure 1. The Learning Cycle.

Stations in the cycle are understood as follows:

1. Experiencing. Learners must be actively involved in their own learning. They must engage

in activities which engender their mathematical thinking. These activities may involve physical

action with materials but will involve mental action. Learning must involve "doing" in order to be

effective.

2. Discussing. Reactions and observations arising from the experiences need to be shared with

fellow learners and other members of the community and talked about in order for them to be
evaluated and, perhaps, validated against the taken-as-shared knowledge of the learner's

community. Explanation, justification, and negotiation of meaning through communication will

help the learner establish this knowledge.

3. Generalising. Learners need to develop for themselves, through individual construction and

interaction with their communities, hypotheses which indicate the current state of their
understanding. These hypotheses, or generalisations, will then be tested for viability through their

application to other problematic situations or further communicative discourse. It is these
generalisations which form the basis for the learner's next experience.

4. Applying. Planning how to use the new or revised learning and actually applying it to

contextual situations will not only validate it as viable knowledge (or suggest rejection of it as non-

viable) but will also provide the learner with another experience which could be used to commence

yet another cycle (Perry & Conroy, 1994, pp. 5-6).

The role of classroom interaction in developing student's mathematical problem solving has

been demonstrated by Schoenfeld (1987). A key feature of the authors' approach to interactive
collaboration is the construction of a set of social norms within the class. The following norms
were developed:

1. Activities will consist of problems for the students. That is, it is assumed that the students

may not be able to obtain solutions or even know where to start immediately.

2. When working in small groups, students are expected to develop solutions to the activities

cooperatively and to reach consensus on these solutions. The teacher is expected to circulate
among the groups, observing their interactions and encouraging their problem-solving attempts.

3. Students are expected, as a small group, to explain and defend their solutions or attempts at

solutions to the whole class. Other students are expected to indicate their agreement or
disagreement and to encourage alternative solutions.

4. The whole. class is expected to see itself as a community of validators and is expected to

work towards a solution or solutions which can be taken-as-shared. It is not the teacher's role to

validate solutions.
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Each student was expected to record in a journal his/her reactions to the course, attempts at

solutions to the activities, and any other feelings or concerns they may have had. The students

were encouraged to make and record summaries of discussions and their generalisations. Mason et

al (1982) point out that by recording the process we follow in solving a problem, we afford

ourselves the opportunity to look back over the process, refine our thinking, and store our ideas for

later use.

Theoretical background on affect in mathematics

According to Silver (1985) ones affective state influences decision making and contributes

towards determining one's actions. Affective states may be attributed to a variety of causes

(Mandler 1989). Responses to a block during the problem-solving process in mathematical

problems causes emotional states which can be immediate and short-lived or intense and globally

encompassing. Goldin (1988) asserts that we give students too little experience with the intensely

positive affective states of pleasure, confidence, and satisfaction in mathematics; and for many

students the first step in achieving needed cognitive and affective mathematical reconstruction is

the interruption of incessant negative feelings created as responses to mathematical encounters.

Method

Students elected to participate in the course in order to achieve a level of competency required

for registration as a primary teacher in New South Wales. Most students were adults and had

minimal background in high school mathematics. In paired groups the students worked through the

phases of the Learning Cycle by way of a series of mathematical problems. All classes were

videorecorded using two cameras. Videotapes were analysed for students' reactions to their classes,

and any movement in affective variables and/or achievement. Data was also collected from

students' assignments, reflective interviews, journals and surveys. It was anticipated that the

students' learning would involve positive changes in affective as well as cognitive states. Two

procedures were used to investigate affective changes. First, comparisons were made between

students' responses to attitude and belief questionnaires before and after the course. Second, video

recordings of students' responsiveness in class and written records in their journals provided case

study data on how attitudes changed. A final examination tested cognitive changes.

Part A: Attitude and Belief Changes

Three questionnaires were used:

1. An Attitude to Mathematics questionnaire was administered. It consisted of 24 statements

which were in no set order but could be divided up into three subsections. Part A consisted of nine

items that were particularly likely to have been influenced by participation in the course such as, "I

get satisfaction from solving mathematics problems" (item 6); Part B consisted of nine items that

were generalisations that may have been influenced by participation in the course such as, "I find

mathematics fascinating and fun" (item 3); and Part C consisted of six items that referred to past

experiences such as, "I did not look forward to mathematics lessons at school" (item 5). Students
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responded by choosing one of five categories - strongly disagree, disagree, neither agree nor
disagree, agree, and strongly agree - and items were scored from 1 to 5 respectively with some

items being scored in reverse order. Scores were added so that total scores could range from 1 to

120 (that is 24 x 5), and a neutral score was 72 (that is 24 x 3).

2. A Beliefs about Mathematics questionnaire with six items such as, "mathematics is
computation" had a similar response format.

3. Similarly, Beliefs about Mathematics Learning had six items such as, "children are rational

decision-makers capable of determining for themselves what is right and wrong".

4. A similar questionnaire Beliefs about Mathematics Teaching was used with six items such

as, "the role of the mathematics teacher is to transmit mathematical knowledge and to verify that

learners have received this knowledge."

There were entry and exit results for 37 students, from three different classes taken by two

different teachers and in tvim different modes (that is, two classes attended weekly for three hours

for 14 weeks while two classes attended the same number of hours but in three blocks of two weeks

spread over one semester). Class sizes varied from 8 to 16 (too small to make inter-class

comparisons).

A two-tailed t-test was used to compare the results before and after the course for each of the

four surveys.

Results

Table 1 gives details of the before and after scores for each of the questionnaires. There was a

statistically very significant increase in attitudes to mathematics which were closely linked with the

course (Part A and Part B of Attitude to Mathematics questionnaire) and a statistically significant

increase in perceptions of attitudes to mathematics of .past experiences, in beliefs about
mathematics, beliefs about mathematics learning, but not about beliefs about mathematics teaching.

Discussion

In light of the candidly honest revelations of students' anxieties and fear of mathematics,

these results suggest that the course had a positive effect on students' attitudes and perceptions to

mathematics. The fact that there was no change in beliefs about mathematics teaching may be a

reflection of students' already changed attitudes from other mathematics curriculum subjects which

also incorporate constructivist approaches to teaching at the University.

A further case study analysis considered how attitudes may have been changing.

Part B: Case Studies
The authors have been able to identify positive change points in students' affective states indicating

progress towards more effective encounters with the content of the course. Presented below are

examples of change points evidenced in excerpts from journals and video recordings.
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Table 1

Attitudes and Beliefs

Questiorinaire

n

Before

mean st.

dev.

After

mean st.

dev.

t-score Probability

Attitudes to mathematics (total) 30 74 20 81 16 2.65 .013**

Attitudes to mathematics (Part A) 35 26 6 31 6 4.29 .000**

Attitudes to mathematics (Part B) 32 28 7 31 6 2.08 .045*

Attitudes to mathematics (Part C) 37 17 7 19 6 2.33 .025**

Beliefs about mathematics 35 19 2.8 21 2.3 2.53 .016**

Beliefs about mathematics

learning

36 24 2.2 25 2.4 2.37 .023**

Beliefs about mathematics 34 20.6 2.3 21.3 1.7 1.33 .193

teaching

Note. significant difference in means of pre- and post-treatment results at 0.05 level;

** significant difference in means of pre- and post-treatment results at 0.01 level

Student 1 and Student 2: The following students were mature-aged female students who had

not completed higher level mathematics at school, who showed a lack of school mathematical

knowledge, who indicated a strong dislike for mathematics, and who showed a degree of fear about

doing mathematics.

Background Student 1 (S1) and Student 2 (S2) worked together in a pair. Sl's score on the
questionnaire Attitude to Mathematics went from 41 to 62. S2's score on the questionnaire Attitude

to Mathematics went from 42 to 46 with increases in all areas of attitudes and beliefs except the

immediate classroom effects.

Early Anxiety and Fluctuating Feelings. Like most, these two students entered the course and

openly admitted their reservations and anxieties about mathematics. It is clear that their feelings

fluctuated; it was not until the fifth or sixth week after considerable struggle that they became more

positive about mathematics. The following extracts have been taken from their journals.

Week 1

Sl: Today we had our first maths lesson (the subject I have been dreading) ... quite frankly the

thought of maths scares the hell out of me. It is my biggest fear in teaching. I wonder

if the children I will teach in the future will suffer because of my insecurities.

S2: With much trepidation and reservation I approached the [maths] class even harbouring a

certain resentment for having to participate in a subject which I despise and abhor. ...

My feelings towards maths have been deeply ingrained since my childhood and I

cannot attribute them to either a teacher and teaching methods or an horrific experience
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that has left an indelible mark on my psyche, I have just little mathematical process and

even less interest in cultivating dexterity.

Week 2

Si: Well after such a successful first week, I attended this week with enthusiasm. This was
short lived. Although it wasn't a complete disaster, I do feel it is not going to be as

easy as I first thought.... However, I am persevering.

S2: The way by which our team attempted the solution was futile and frustrating and
thoroughly annoying. We did not achieve the answer nor did we get anywhere near

close. Yes, yes, we did attempt it and used what to the best of our ability was the most

practical way of achieving the solution. . . . When the easiest and most common

method was explained, I still did not understand and I could not possibly use this

method myself.

Week 3

S2: I am fighting a sense of panic and being forced to deal with this in front of a group of [other

students].... I have nothing positive to say about today's lesson. I'm too distraught and

disgruntled.

At all times, students in the class were aware that they needed to make the mathematics their

own and to reproduce it themselves if they were to be successful. On many occasions class

empathy for the struggle resulted in the class overcoming a constraint in order to make progress.

Interactive collaboration and peer support offered comfort and reassurance as now described.

Week 4

SI: My partner also had a tough time with this. I was really concerned for her. . . . We should

not have to succumb to tears because no one else is making sense. . . We did not do

[the homework] because we both felt defeated.

Through such empathy, the learners bonded together and became willing to share their feelings and

understandings leading to further affective and cognitive critical-changes (Geoghegan et al, 1994).

Week 9

S2: The dreaded "r word. That snuck up on me today as I sat unsuspectingly contemplating
[the success of our last assignment]. Not quite as daunting as a previous experience,

we managed to come to terms with the concept of Trigonometry . . . When it is

explained to me by one of my peers in a really basic fashion .I am able to understand

and it actually seems to make sense.

All students have an immense store of mathematical knowledge but they need to recognise that

they have it and be encouraged to recall it, and to be confident to use it (Goldin, 1988). It would

seem that the class collaboration assisted students by providing them with empathy, and time to

think verbally and analytically. S2 had a high positive self-esteem in language, she was able to

listen to others, say ideas in her own words, make links with verbal ideas, construct ideas, and
summarise what was being discussed. These were pathways for her to move away from negative

global structures and move towards a useful heuristic for understanding the problem. At least for
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this occasion, she was able to receive some sense of pleasure in finding a "solution." Goldin (1988)

asserts that success can evoke continued application of the successful method; it blossoms into

pleasure as the method continues to work. Interestingly, S2 seriously considered withdrawing from

the course in week 3 but remained, and gradually displayed considerable development in
confidence and understanding. It was through peer encouragement and interactive collaboration

that this student's doubts were allayed and a feeling of empowerment derived. Goldin (1988) states

that encouragement is a vital step on the pathway to positive feelings towards mathematics.

Week 7

S2: What a positive experience. Today is the first day where I felt I was part of the class and

could almost 'keep up'. The fact that we passed the assignment also has left me on a
high and I never actually felt that I would achieve the sensation of satisfaction about

maths.... perhaps my attitude is changing.... I walked out of the class happy with the

lesson and my own performance.

Week 10

S2: I thought I was making some connections and even got excited at the fact that I was doing

the work unaided at one stage. . . well we are moving much too quickly but I am
starting to feel a little more au courant with tan, cos and sin.

Discussion

The students, by and large, were responsive to the approach and developed positive
dispositions which kept them on track towards meeting the challenge of the course content. S1 and

S2, like most students, attributed their lack of mathematical ability and lack of self-esteem in
mathematics to "a lack of endowment" (Week 1, journals). By the end of the course, students had

recognised their own use of mathematics, they had seen some relevance after all in mathematics,

and had conceded some successes which they were willing to own. Overall it can be said that
interactive collaborative work was a very important support for students and a main reason for their

attitude changes and success.

Conclusion

Interactive collaboration within the learning environment allowed the students to feel
comfortable with the approach and what it was attempting to do. The cooperative, problem-centred

approach facilitated the mathematics learning of many of the students and developed in them a

confidence in their own abilities to get started on mathematical problems and persevere with them.

We have seen how over a period of time increasing success and positive feelings associated with a

supportive classroom have assisted learning. Different types of affects, from positive to
negativeshort term feelings, general attitudes, and long term beliefswere all involved in the
learning. The paper has further illustrated the links between the heuristics of learning mathematics

and the development of positive or negative affective variables.
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GROUPWORK WITH MULTIMEDIA IN MATHEMATICS: THE ILLUMINATION OF
PUPIL MISCONCEPTIONS FROM A VYGOTSKIAN PERSPECTIVE

Brian Hudson

Mathematics Education Centre

Sheffield Hallam University

UK

ABSTRACT

This paper outlines the way in which the National Curriculum Council sponsored multimedia

package "World of Number" (Shell Centre et al, 1993) was used as the focus for a group activity

with a Year 9 (age 14/15 years) mathematics class. The classroom research was carried out in a
South Yorkshire comprehensive school during the Spring Term of 1994. The class was engaged in

work which involved graphs of relationships and close attention was paid to relationships between

distance, speed and time in a variety of contexts. The research methodolgy involved the recording

of the classroom interaction on videotape and a micro-analysis of the resulting discourse. Using

Vygotsky's notion of the function of egocentric speech, this analysis illuminated the misconceptions

of one pupil in particular. The results of this analysis are the focus of this paper.

BACKGROUND

The group involved in this project was a Year 9 top set of approximately thirty pupils. The

project was designed to fit in with the planned scheme of work for the Spring Term of 1994 when

the group was due to do a unit of work on graphical interpretation involving graphs of motion. The

overall plan was based upon the theme of graphical interpretation and the aim was to integrate

activities both on and off the system with aspects from the planned scheme of work over a two

week period. The topic was introduced as a whole class activity, more fully detailed in Hudson

(1994a), and in the following lesson one of episodes from the unit Running, Jumping and Flying

was introduced to the whole class with the aim of setting the context and giving the pupils a sense

of what to expect in terms of the future activities on the system. The unit is made up of video clips

of various examples of motion, several of which are sporting events from the Seoul Olympics as

detailed in Figure 1. Each sequence has two or three graph options associated with it. For example,

in the sequence shown in Figure 2, the chosen axes in the bottom left hand window are height and

time. Other choices might be distance against time and speed against time. This would give three

graphs to choose from in the bottom right hand window. The combined choice is.illustrated in the
top right hand window.

Following the whole class introduction some groups began working on the activities at the

system. A group size of three had been agreed with the class teacher, with the aim of creating the

conditions for effective interaction. Each group was allocated an initial period of thirty minutes for

intensive work at the system. The practical limitations were eased considerably by the use of two

systems. In addition to the original laser disc package the school alsti had the use of the CD ROM

version. This provision enabled four groups to carry out the multimedia-based activities in a one

hour lesson and for each group to have a turn over the period of a single week.
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MULTIMEDIA-BASED ACTIVITIES

The main aims of the multimedia-based activity were to promote discussion and require time for

reflection which was consistent with one of the preliminary findings of the evaluation conducted by

the National Council for Educational Technology, as reported by Hughes (1994), of the need for

"reflective moments". The activity was structured in such a way as to encourage the following

process: select and view a video sequence, think about the distance-time graph, sketch the graph,

compare graphs, choose which fits your ideas, explain to each other why a particular graph does or

does not fit, test out choice on the system and finally repeat the process with a different choice of

axes. In summary this was a cycle of observation, reflection, recording, discussion and feedback.

RESEARCH METHODOLOGY
The approach to the analysis of the classroom discourse was particularly influenced by the work

of Mercer (1991), Edwards and Mercer (1987) and also that of Teasley and Rochelle (1993). The

focus of the study reported upon by Mercer is the content and context of educational discourse

from a theoretical perspective strongly influenced by the work of Vygotsky. (1962). He describes

the analytic methods adopted as being similar to those of ethnography, "in that we were similarly

concerned with the minutiae of what was said and done; and we were interested in participants'

accounts and interpretations of what they said and did". The method employed by Mercer involved

the complete transcription of all the discourse recorded on videotape. In addition, any information
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on the physical context and non-verbal communication, which was necessary to make sense of

what was said or done, was added alongside the relevant section of the transcript. This information

is described as context notes which might include reference to the physical 'props' of the classroom,

such as equipment, drawings, texts and computer-screen representations invoked by speakers to

support the discourse. However this work was conducted in classroom situations in which the

focus was mainly upon the interaction between teacher and pupil.

In reflecting upon this approach, the need for an interpretive framework through which to analyse

the data arising from peer interaction soon became evident. The approach adopted by Teasley and

Rochelle was found to be particularly resonant and was consequently adapted to form the chosen

framework. Teasley and Rochelle report on a study which is intended to illustrate the use of the

computer as a cognitive tool for learning that occurs socially. The study is concerned with the

question of how students construct shared meanings in relation to modelling activities, in the

context of a Newtonian microworld. This microworld is a computer package which is described as

"a graphical and dynamic simulation of a physicists' mental model of velocity and acceleration".

They outline a theoretical perspective in the tradition of Vygotsky, in that it is based upon a view of

learning as a fundamentally social activity i.e. that understanding is built through social interaction

and activity and that concepts and models are social constructions resulting from "face-to-face

participation" in activities.

A framework for the analysis of collaboration is outlined, which the authors argue involves not

only a micro-analysis of the content of students' talk, but also how the pragmatic structure of the

conversations can result in the construction of shared knowledge. In order to understand how

social interaction affects the course of learning, Teasley and Rochelle argue that it requires an

understanding of how students use coordinated language and action to establish shared knowledge,

to recognise any divergences from shared knowledge as they arise, and to rectify any

misunderstandings that impede joint work.

The notion of "a shared conception of a problem" is a central one and this is used as the basis of

what is described as a Joint Problem Space. It is proposed that social interactions in the context of

problem solving activity occur in relation to a Joint Problem Space (JPS). This is defined as a

shared knowledge structure that supports problem solving activity by integrating goals, descriptions

of the current problem state, awareness of available problem solving actions and associations that

relate goals, features of the current problem state and available actions.

A number of "structured discourse forms" are described which conversants use in everyday

speech to achieve mutual intelligibility. These utilise language, bodily action and combinations of

words and actions. It is proposed that students use the structure of conversation to continually

build, monitor and repair a JPS. They also describe some categories of discourse events that they

have used in their analysis such as turn taking, narrations and coordinations of language and action.

A fuller account of the application of this framework is detailed in Hudson (1994b). The focus of

the main section of this paper is on how this analysis illuminated the misconceptions of one pupil in

particular.
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ANALYSIS OF VIDEO TAPE TRANSCRIPTS - NEIL: AN INDIVIDUAL CASE STUDY

This section focuses on Neil's utterances who was a member of a group with Philip and Jonathan.

In this first example of classroom discourse Jonathan and Neil are responding to what they have

seen on the video, which involves a cheetah chasing its prey, and also to the questions posed by the

teacher researcher (TR). It begins with Jonathan and Neil's responses to the question posed, about

what the graph of distance against time might look like:

N: Distance is ... It goes up the distance doesn't it? Well like
along. Time.
TR: What's happening to the distance?
P: It's getting greater.
N: It's going up. Higher.

Neil appears to be confused, when he asserts that "It goes up - the distance", seeking acceptance

or confirmation with the question "doesn't it?". He continues with the utterances "Well like along"

and "Time". From these it would appear that Neil is very confused in his thinking. This elicits an

attempt to clarify matters, with the question "What's happening to the distance?". Philip replies

correctly that "It's getting greater". However Neil's response suggests a confusion between the

graph itself, which is indeed going up the page, and the actual distance which is increasing. A

feature of Neil's thinking is this lack of distinction between the motion itself and its abstract

graphical representation.

In a later episode of an aeroplane landing, this aspect of Neil's thinking is again evident. The

axes are initially set on height against time.
Group 3: Philip B, Neil and Jon'n
Episode 4: Aeroplane (0.58.18)

1 P: It doesn't start off ...
Watch this. Height against time.

2 N: Speed against time that.

3 P: Yes but no. We've got to choose which height
against time is the right one.

4 J: Let's have a look.

5 N: Yah!
Oh! How come it does all the wavy lines?
It goes straight down.
It doesn't go up and down does it?

6 I .1: Well change it! Have a look ...
7 I 13: No but the nose goes up, doesn't it?

8 I N: No! That's not it!
9 11: That's not it!

10 N: It's taking off that, isn't it?

BEST COPY AVAILABLE
3 235

Philip runs the video.

The axes are set on height against time.

Trying to clarify the task.

Referring to graph optio
1.

Making a diagonal downward wavy motion.

Making a diagonal downward smooth motion.

Referring to graph option
2.

243



Philip's response Neil's initial statement appears to be contradictory. He replies "Yes but no". By

this he may have been indicating that, "yes", the graph showing is the correct choice to fit the speed

against time axes but that, "no", it is not addressing the current problem which is "to choose which

height against time is the right one." In doing so, Philip is attempting to establish a shared

understanding of the problem or a Joint Problem Space. Neil's response to the video sequence

would seem to be based upon an expectation of a smooth line, which probably reflects the more

simple models from his past experience. However Philip observes that the nose of the aeroplane

"goes up" on landing. The final comment in this section from Neil, displays evident confusion

between what he interprets from the graph and what he observes by watching the video sequence,

which is clearly of the plane landing. The fact that the graph is rising from left to right-suggests-to

Neil that this is the flight path of the aeroplane taking off.

It would seem that Neil's misconception is related to the fact that he is describing the picture that

he sees on the page i.e. "It (the line) is going up (the page). Higher (up the page)". The inability to

distinguish, between the abstract representation of the motion pictorially and the motion itself,

would explain why Neil interpreted this graph as showing the aeroplane takihg off.

Neil's difficulties appear to stem from his use of speech and in particular from the lack of

distinction he makes between the situation that he is describing, and its abstract representation in

the form of the graph. For example, this can be highlighted in the following utterances of Neil,

taken from the interaction above:

N: Yah!
Oh! How come it does all the wavy lines?
It goes straight down.
It doesn't go up and down does it?

When Neil refers to "it" doing "all the wavy lines", he would appear to be referring to the graph,

though he does not make this clear. However, in the subsequent utterances, he seems to refer to the

aeroplane when he talks about "it" going "straight down" in contrast to it going "up and down".

Later in the same episode the group is considers distance against time.
Group 3: Philip B, Neil and Jon'n
Episode 4: Aeroplane (continued 1)

11 1: Do you want to change that one? Referring to the choice of axes.

12 P: Yeh, I've done that. It's distance against time
now.

13 N: Distance is going down?
No! How could it be going down - distance?
Oh, it's just landed.
But its time's going up!

14 I What?
15 11: The distance? It can't ... can't ...
16 I N: ... go down. It just goes up.
17 I P: I know it can't.
18 I N: So, why does it look like that then? Looking at graph option 2.
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Neil's stream of utterances at line 13 form a narration of his current thinking, which once again
appears to be very confused. He seeks to interpret the graph in terms of the possible motion of the
aeroplane. His first utterance relates to a perception of the distance going down rather than
decreasing. Once again, Neil fails to make a clear distinction between the situation and its abstract
representation in the form of the graph. In the first utterance from this interaction, he uses "it" to
refer to at least two aspects:

Distance is going down?
No! How could it be going down - distance?
Oh, it's just landed.
But its time's going up!

Firstly he uses "it" to refer to the distance, then in the following utterance refers to the aeroplane
and finally talks about "its" time going up. He seems to dismiss this as a possibility but then refers
to the fact that the plane has "just landed". By prefixing his sentence with "Oh", he seems to imply
that the distance going down might be linked with the plane landing. This might suggest a
confusion between the height and the distance (goingdown). However the notion of going down in
this case would appear to have been transferred from (going down) the page to (going down) in
mid-air. The evident inability to distinguish between the abstract graphical representation and the
Motion itself would be consistent with his previous thinking. He concludes with the utterance "But
its time's going up!" which seems to emphasise his state of confusion.

Neil's use of language throughout is resonant with the function of speech as outlined by Vygotsky
(1962). According to Vygotsky's theory, which was based upon a critique of that of Piaget, speech
can be considered to have two particular forms which he describes as egocentric and
communicative respectively. The notion of communicative speech is based upon Piaget's idea of
socialised speech. However Vygotsky proposes that both egocentric and communicative speech
are social, but that it is their functions which differ. The function of communicative speech, as
implied in its description, is for the purpose of communication with others. On the other hand, the
function of egocentric speech is as an instrument of thought itself. He develops his view of the
function of egocentric speech, by arguing that all silent thinking is "nothing but egocentric speech".

In particular, many of Neil's utterances are resonant with Vygotsky's description of egocentric
speech. From observations based on his own experiments, Vygotsky notes that children resort to
egocentric speech when faced with difficult situations. From these observations, he concludes that
egocentric speech and silent reflection can be functionally equivalent. He argues further that
egocentric speech is the genetic link in the transitionbetween vocal and inner speech, and that it is
this transitional role that lends it such great theoretical interest. He proceeds to highlight how the
conception of speech development "differs profoundly" in accordance with the interpretation given
to the role of egocentric speech. The resulting picture of the development of a child's speech and
thought is thus from the social, to the egocentric and finally to inner speech. Thus the direction of
the development of thinking is not from the individual to the social (as argued by Piaget), but from
the social to the individual.
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In supporting his argument, Vygotsky describes "an accident" which occurred during the course

of one of his experiments, which he suggests provides a good illustration of one way in which

egocentric speech may alter the course of an activity. He recounts a young child who was drawing

a "streetcar" when the point of his pencil broke. Nevertheless, he tried to complete the circle

representing the wheel by pressing down on the pencil very hard. However nothing showed and

the child muttered to himself, "It's broken." He then put aside the pencil, selected a paint brush

instead and proceeded to draw a broken streetcar after an accident, continuing to talk to himself

from time to time about the change in his picture. Vygotsky uses this incident of the child's

accidentally provoked egocentric utterance as an example to show how it "so manifestly affected

his activity that it is impossible to mistake it for a mere by-product, an accompaniment not

interfering with melody". Vygotsky develops his argument by describing how, from his

observations, egocentric speech at first marked the end result or a turning point in an activity, then

was gradually shifted towards the middle and finally to the beginning of the activity, taking on a

directing, planning function and raising the child's acts to the level of purposeful behaviour. He

compares this process to the well-known developmental sequence in the naming of drawings. A

small child draws first, then decides what it is she has drawn. At a slightly older age, she names

her drawing when it is partially completed. Finally she decides beforehand what she will draw.

Neil's egocentric utterances are provoked in response to the examples of motion and also to the

possible graphical representations of these which he sees on screen. From the episode involving

the cheetah, it can be seen that Neil describes the distance as going up, when it is in fact increasing.

As indicated earlier, the graph of distance against time could be described, quite reasonably, as

going up the page. However, Neil does not distinguish between his descriptions the motion itself

and those of its abstract graphical representation. In the later episode of the aeroplane landing, he

is now faced with a situation which involves vertical motion, for which the use of the term going

down would be appropriate and for which, in more general situations, it would be quite appropriate

to describe an aeroplane taking off as going up. In a similar way to Vygotsky's example of the

streetcar, Neil's interpretation seems to be affected by his previous egocentric utterances, when on

viewing the graph which shows a diagonal line, rising front left to right, he responds by saying "It's

taking off that, isn't it?".

Neil's confusion is exacerbated by the fact that the graph which he sees on screen is not a

simplified idealised version but a realistic representation of the downward motion of the nose of the

aircraft, which is not uniformly smooth. With apparent reference to the graph, he asks, "How come

it does all the wavy lines?" and adds, with seeming reference to the aeroplane, that "It goes straight

down. It doesn't go up and down does it?" Subsequently he describes the distance as "going

down" and his thinking would appear to have been affected by his previous egocentric utterances

with regard to the aeroplane. The notion of the "distance going down" now seems to be transferred

from the abstract graphical representation to the situation itself, and Neil exclaims, in what appears

to be a series of entirely egocentric utterances:

No! How could it be going down - distance?
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Oh, it's just landed.
But its time's going up!

CONCLUSION

Forman and Cazden (1985) observe that when they sought to explore Vygotskian perspectives for

education, they immediately confronted questions about the role of the student peer group. In this

study the process began by exploring the role of the peer group and led to the perspective

representing the starting point of Forman and Cazden's enquiry. Forman and Cazden point towards

Vygotsky's notion of internalisation, by which the means of social interaction, especially speech,

are taken over by the child and internalised and how development proceeds when

interpsychological regulation is transformed into intrapsychological regulation. The case study of

Neil offers particular resonance with Vygotsky's notion of the function of egocentric speech and

also illuminates how misconceptions can develop as a part of this process. These findings point

towards the need for monitoring the processes of peer interaction in such contexts involving the use

of multimedia and/or computer systems. The experience from this study suggests that the role of

the teacher in this process is a crucial factor, made more effective by an awareness of the potential

for the development of such misconceptions as those highlighted in the case of Neil.
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Tell me who your classmates are, and I'll tell you what you learn:
conflict principles underlying the structuring of the math class

Liora Linchevski Hebrew University, Jerusalem

Tracking and grouping are still widely viewed, among math educators, as the best way to deal with
students of different levels and achievements. In this paper we report on a research study into the
differences between the mathematical achievements of the students participating in a project of
teaching mathematics in heterogeneous classes and others who study in heterogeneous homerooms
classes while being allocated to ability groups in mathematics. Fundamental differences between
the two groups of students have been found.

Background

In Israel, tracking and grouping are widely viewed as the best way to deal with students of different

levels and achievements. Recently, however, discouraging results from studies of tracking, on one

hand, and new evidence of the promising potential of cooperative learning in mixed ability groups on

the other, have prompted attempts to cope with diversity of students within the mathematical

classroom. In this paper we will report on a recent project of teaching mathematics in heterogeneous

classes based on those attempts. The implementation of the project is accompanied by a research

stludy into the differences between the mathematical achievements of the students participating in

the project and others who study in heterogeneous homerooms classes while being allocated to
I

ability groups in mathematics.

[The project guidelines

The teaching was conducted according to four central strategies: 1. Whole-class discussions 2.

Small heterogeneous group learning 3. Small homogeneous group learning 4. Larger homogeneous

group learning. Each of these strategies was employed in response to different needs for interaction

among the learners. Whole-class discussions gave the teachers a chance to create an appropriate

learning atmosphere and develop norms such as: listening to classmates, legitimization of errors,

freedom to express ideas as well as to indirectly deal with issues like the mathematical conversation,

conceptions about what is mathematics, and the ability to cope with conditions of vagueness (Gooya,

1994; Davis, 1989).

The justification for small-group interaction within the mathematics classroom is widely described in

many recent papers. However, Cobb (1994) identifies 4 types of small-group interactions. (1)

univocal interaction (2) multivocal interaction (3) direct collaboration (4) indirect collaboration.

Cobb maintains that the type of interaction is heavily dependent on the diversity of the mathematical

abilities of the participants. Moreover, the established type of interaction is quite stable and

determines the types of learning opportunities arising within the group. As such, we may say that

different group combinations provide the learners with different learning environments.

Cobb points out that productive small group interactions involve both indirect collaboration and

multivocal interaction, which at first glance imply hoMogeneous grouping. "Homogeneous grouping,

however, clashes with a variety of other agendas that many teachers rightly consider important
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including those that pertain to issues of equity and diversity" (ColSb, 1994, p. 207). Since within the

same small-group the type of interaction very rarely changes we have chosen, in our project, the
strategy of alternating two basic types of small groups: "homogeneous" groups and "heterogeneous"

groups, so that each child is simultaneously a member of two groups (sometimes even more). A

student who is the mathematical authority in one setting may play the role of the "follower" in

another. Experiencing the position of the "helper" on a regular basis in one context influences the

student's ability to become an "active" listener" in another and in turn influences his/her role as the

"helper". No doubt, opportunities for indirect and multivocal interaction are created.

The fourth strategy of class organization, large homogeneous groups, provided opportunities to

bring topics discussed in the homogeneous small-groups to semi-class discussions while exploring

unforeseen avenues emerge from these discussions and planning future activities for the groups. The

teachers also used this type of organization whenever they thought that their intervention was crucial

to the quality of the groups' work.
Ability grouping versus Mixed ability classes: a glimpse at past research

The degree of influence of school grouping methods upon the individual student's scholastic

achievements is a central issue in the educational system. Ability grouping, one of the most common

of these, is justified by the need to adapt content, pace and teaching methods to students functioning

on different levels and as a means of improving the scholastic achievements of all the students (Dar,

1985; Slavin, 1988; Sorensen & Hallinan, 1986, 1990). On the other hand, not a few theoretical

approaches disagree about whether placing students into ability groups is the correct method for

dealing with the heterogeneity of classes. Most of these approaches stress learning as an individual

process nourished by interpersonal interaction. (Bandura, 1982; Corver & Schiene, 1982; Voigt,

1994), and argue that the learning group makes a critical contribution to the studint's progress. For

example, Kerckhoff (1986) compared the achievements of students with the same placement data in

schools of various levels, as well as students in different ability groups within the same school. He

found that the type of school and the level of the ability group have a statistically significant effect on

the students' achievements in mathematics and reading. The general controversy surrounding this

issue is even greater with respect to the subject of mathematics. The justification offered for the need

to organize students into ability groups is that mathematics is "graded", "linear", "structured",
"serial", "cumulative", etc. - making it difficult to work with groups of students on different levels of

ability. And indeed, the central concepts used by the supporters of ability grouping are "ability to

learn mathematics" and "the hierarchical nature of the subject" (Ruthven, 1987). They view students'

ability as the central explanatory factor in differentiating their achievements in mathematics (Lorenz,

1982).

It is therefore questionable whether ability grouping advances us toward the goal for which it was

designed, or whether it actually defeats this purpose. In empirical research on ability grouping there

are two utterly different traditions: 1. Studies comparing the achievements of students in ability
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groups to those of students in heterogeneous classes. 2. Studies comparing the achievements of

students in higher-level ability groups to those of students in lower-level groups in the same school.

Studies of the first sort have generally concluded that there is no difference between the two methods

from the standpoint of the average achievements of the students in general (Slavin, 1990).

Nevertheless, when the differential effect of ability grouping was examined, the results were
different: the results reveal an interaction between tracking and the students' achievement levels: On

the average, students in the higher ability groups gained more than equally able students in
heterogeneous classes, while students in the intermediate and lower ability groups gained less than

students of the same ability in heterogeneous classes.

However, most of these studies have a common methodological problem, the selection problem: the

possibility that the groups being compared differ not only in the treatment they received (ability

grouping versus heterogeneous classes) but also on some other relevant characteristics (Abadzi,
1984; Kilgore, 1983).

Since it is so difficult to perform random experiments in the educational system, while post-hoc

comparisons between schools with and without ability grouping pose methodological problems, the

second type of research became more prevalent. This type of research focuses on the differential

effects on learning at the various levels of ability groups. The question studies of this sort ask is

whether the gap between the better and the weaker students after being placed in ability groups for

some time is different from the gap that would be expected on the basis of the previous differences

between them. In other words, does the placement of students in ability groups differing in their

initial level lead, in and of itself, decrease or increase the differences between students' achievements

(Slavin, 1990). The most prevalent finding of these studies is that ability grouping does have an

effect on achievement, and that this effect is in the direction of increasing the gap between the
students in the various ability groups (Alexander, Cook & McDill, 1978; Gamoran & Barns, 1978,
1986; Gamoran & Marr, 1989; Oakes, 1982; Sorenson & Hallinan, 1986).

In these studies the main methodological problem is to separate the effect of belonging to groups at
different levels from the effect of the initial differences between the students placed in these groups
on final achievements. Moreover, in this case the selection -- that is, the initial difference between the
students placed in the various groups -- is inherent in the very notion of ability grouping and cannot
be considered a "mishap". Therefore the differences in achievement between groups at different
levels reflect both the effect of the initial differences, between the groups and the possible effect of
the grouping itself. This is an interesting case in which it is in principle impossible to investigate a
treatment effect using an experimental design.

The regression discontinuity design

The above described methodological problem can be overcome in the cases where the students were
divided into group levels by setting agreed-upon cutoff points. Having this information allows us to
perceive the students who stand immediately on the two sides of a cutoff point as identical from the
view point of the selection criterion. Following their mathematical development for a period of time
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can put light on the influence of ability grouping. This research design is known as the quasi-

experimental regression discontinuity design (Cook & Campbell, 1979; Kahan, Linchevski & Igra,

1992; Linchevski, Kahan & Dantziger, 1994). The use of this design enables us to estimate the effect

of the initial differences among the students: This effect is estimated by the regression line of the

posttest on the pretest within each group level, while the effect of the grourit level is estimated by the

discontinuity between the regression lines within consecutive group levels. A design of this sort was

used successfully by Abadzi (1984, 1985) for investigating the effect of track levels. The research

described in the present paper uses this discontinuity regression design to investigate the effect of

ability grouping in mathematics in Israeli junior high schools and to compare it to the effect of

studying in the mixed ability classes participating in our project. The research consists of four

longitudinal studies. The first one evaluated the effect of grouping after a year and after three years

(henceforth study 1). The second one evaluated the effect of learning in heterogeneous classes, on

students of different ability levels, after a year and after two years (henceforth study 2). The third one

has been examining in depth the mathematical thinking and performance of students who were

initially at the cutoff points and were therefore subsequently more or less arbitrarily assigned/ or

hypothetically assigned to two distinct ability groups. The fourth one compared the mathematical

achievements of 2 groups of students studying at the same school and who were arbitrarily assigned

to heterogeneous classes or ability grouping. In the following sections we will report on the first two

large-scale studies only.

Research design

Sample

Study I A sample of 9 junior high schools, with a total of 1677 students, was taken from among the

schools that satisfied the necessary conditions: 1) heterogeneous homeroom classes and ability

grouping in mathematics, 2) students were allocated according to a clear agreed-upon criterion.

Study 2; All the 12 junior high schools which participated in the heterogeneous project were

included, with a total of 1730 students.

Tests: Achievements in mathematics were measured by tests constructed according to the topics

covered in school detailed in the mathematics curriculum (Ministry of Education and Culture, 1968)

and were validated by experts.

Variables

Study 1: Four variables were defined for each student: Ability group level (level 1 "high" to level 4

low") and placement score (henceforth pretest) served as independent variables, while the

. achievement test stores in mathematics after one year and after three years of ability grouping

(henceforth posttests) served as the dependent variables.

Study 2: In study 2, however, since the students were actually studying in heterogeneous classes, the

implementation of the research design required a procedure of creating hypothetical ability groups.

Therefore, at the beginning of the seventh grade, without bringing this to the knowledge of any of

the parties, the students were allocated into "hypothetical ability groups". The placement procedure
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was done exactly the same as the school had used in the past, and consequently the students'

distribution was shelved. The hypothetical group level and the hypothetical placement scores

(henceforth pretest) served as the independent variables, while the achievement test scores in

mathematics afler one year and liner two years of studying in heterogeneous classes serval as the

dependent variables.

Calculation of effects

The grouping/hypothetical grouping effect and the pretest effect were calculated separately for each

of the schools. The overall grouping effect, was defined as equivalent to , 1<j<nt-1, where m

indicates the number of ability groups in the school and Hj is the effect of ability group. Similarly, the

overall effect of the initial differences between the students, was defined as Pj, 1<j<m where Pj is

the overall effect of the pretest for ability group j. The two effects can easily be calculated using a

multiple regression equation to predict posttest scores on the basis of the pretest score and ability

group level. Thus the overall effect of grouping in each school is (m-1)bu, where bu is the

regression coefficient of the ability level variable. The overall effect of the pretest score is (Xmax -

Xmin)bp, where by is the regression coefficient of the pretest score variable and (Xmax - Xmin) is

the range of the variable within the specific school.

Results

Study 1: The overall effects of ability grouping on achievements in mathematics at the end of the

seventh and the ninth grades, for the students who remained in the same group for the entire period,

are presented in Table 1 and in Figure 1, separately for each school.

Table 1: The grouping effect and the ability
effect in achievments in mathematics
at th end of the 7th grade and at the end
of the 9th grade.

School

7th grade 9th g ade
Ability
Effect

Grouping
Effect

Ability
Effect

Grouping
Effect

1 1.3 1.4 2.2 0.7
3 1.5 1.1 2.2 0.9
5 1.2 0 . 7 2.1 0.1
6 1.4 1.5 1.5 0.8
9 0.6 1.6 1.2 '1.2

10 2.2 1.1 2.2 1
12 0.7 2.1 1.7 1.3
14 1.2 1.2 1.5 1
15 0.8 1.5 1.1 0.9

Median 1.2 1.4 1.7 0.9

Figure 1: A comparison between the
grouping effects in the 7th
grade and the 9th grade.

Grouping Eflect 7th Grade
25

As can be seen from the Table, the overall effect of group level in each school was already positive at

the end of the seventh grade, after one year of ability grouping. The effect size varied considerably

among the schools. At the end of the seventh grade, the effect ranged from 0.1 to 1.3 SD, with a

median of 0.9 SD. At the end of the ninth grade it ranged from 0.7 to 2.1 SD, with a median of 1.4

SD. In each of the schools the grouping effect was greater at the end of the ninth grade than at the
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end of the seventh grade (see Fig. 1). Figure 2 presents examples of three cases of regression

discontinuity of the posttest scores on the pretest scores at the end of the seventh grade: School #5,

where there was a negligible grouping effect; School #6, which had the median absolute value of the

group level effect, as well as the median ratio between this value and the size of the pretest effect;

and School #4, where there was a negligible pretest effect and an especially large grouping effect.

E:

Densell

melee
Nstast

.Figure 2: Representative cases of discontinuity in post-test / pre-test grades

the increase in the grouping effect over the three years of junior high school was not only absolute,

but also relative to the effect of the initial differences. At the end of the seventh grade the grouping

effect was less than the effect of the initial differences in 8 of the schools and equal to it in the

remaining school, while at the end of the ninth grade the grouping effect was greater than the effect

of the initial differences in most of the schools.

Study 2: The overall effects of the hypothetical grouping on achievements in mathematics at the end

of the seventh grade, for students studying in heterogeneous classes is presented in Table 2.

Table 2: The results of the regression at the end of the 7th grade inside the schools

School No. of
Students

No. of
Groups

Hypothetical
Grouping
Effect

Standard'
Deviation

Ability
Effect

1.1 93 4 0.36 0.27 2.75
1.2 64 3 0.42 0.28 3.17
2 247 3 0.26 0.16 2.30
3 196 3 0.60 * 0.20 2.75
4 91 4 0.12 0.23 2.71

5.1 94 4 0.87 0.20 3.45
5.2 64 3 -0.10 0.17 2.78
6 187 4 -0.09 0.17 3.15
7 240 3 0.34 0.18 3.11
8 155 3 0.40 0.21 3.57
9 66 3 -0.26 0.34 2.20
10 132 3 -0.10 0.18 2.90

BEST COPY AVAILABLE
3 - 245 253



As can be seen from Table 2 in eight out of the 12 schools the effect was positive and in four of them

negative. It means that in some of the schools the gap between the students was greater than the one

expected on the basis of the initial differences and in some smaller. The effects of the hypothetical

ability grouping and the effects of the initial differences, after two years of studying in heterogeneous

classes, for four schools, is shown in Table 3.

Table 3: The results of the regression at the end of the 8th grade

School No. of

Students

No. of

Groups

Hypothetical

Grouping Effect
Standard

Deviation

Ability

Effect
3 180 3 0.52 * 0.21 2.7

5.1 93 4 0.36 0.21 3.0
5.2 57 3 0.24 0.18 2.8
9' 66 . 3 -0.10 0.31 2.7

* Significant

The effects of the hypothetical grouping at the end of the seventh and the ninth grades were small in

themselves and also small in comparison to the effects of the initial differences. Since they were not
statistical significant and not consistent in direction we might even interpret them as no effect.
Discussion

The purpose of the study was to examine the effect of ability grouping in mathematics and of
studying in heterogeneous classes on the variance in students' scholastic achievements. The findings
show that placement in ability groups has a clear effect on the students' achievements. The direction
of the effect was consistent across all 9 schools in the sample: The differences between the scholastic

achievements of the students at the different group levels at the end of the first and the third years

were greater than would have been predicted by the data at the time of placement. In other words, if

two students with the same pretest scores, close to the cutoff point, were randomly placed in groups
at different levels, then the scholastic achievements of the student in the higher group would be
greater than those of the student placed in the next lower group. The consistency of the effect across
the 9 junior high schools studied (which constitute independent replications) indicates, in our
opinion, that the phenomenon is a general one. The findings with regard to the heterogeneous classes
do not show a clear effect. In some of the schools the gap increased and in some decreased. Those
findings can be interpreted in several ways. Although all the investigated schools belong to the same
project this, probably, does not in itself lead to identical mathematical environment. The need to
challenge each child, for example, for as long as possible requires intra-class differentiation.
Investigation into the fundamental differences between the two types of schools is necessary.
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WHAT IS THE MOTIVE OF MATHEMATICS EDUCATION?
An attempt at an analysis from a Vygotskyan perspective

Dagmar Neuman,
Goteborg University, Department of Education and Educational research

Abstract
The presentation sets out from an analysis of the motive of mathematics education made from

activity theoretical assumptions. The origins of 'maths-difficulties' are discussed from this analysis
and related partly to the concept 'proceptual divide', coined by Gray and Tall as predicting success or
failure in mathematics at an early primary level, and partly to results of Swedish phenomenographic
investigations, illustrating that 'proceptual divides', eliminating scores of pupils continuously, also
appear after the first one at the primary level. The result of these studies lead to two hypotheses 1)
Neither the kind of flexible proceptual thinking predicting success, nor the rigid procedural behaviour
predicting failure is inborn. Both dispositions might be the result of teaching. 2)To avoid 'proceptual
divides' the motive of mathematics education must be changed from activities giving 'surface
knowledge' to activities with the motive of producing social competence.

Introduction

Some years ago I put the question: 'What use is maths?' to five 8-year old Swedish pupils who

were at the end of the first grade. All of the children thought that the main reason for learning 'maths'

was so they 'could do adding and ... take away .... or so that they could 'write ... some numbers'.

Asked when they would need this knowledge, they just sighed, this was the same when I asked if

their parents ever needed 'maths'. One child finally came up with the thought that parents have to

know 'maths' because 'otherwise they don't know it!' (Neuman, 1989) This child illustrated a deep

familiarity with the motive for traditional 'maths education' given at school: to give people the
'surface polish' necessary for posing as men/women of education.

Freudenthal (1983) proposed a didactical phenomenology with a different motive. 'Since our

mathematical concepts, structures, and ideas have been invented as tools to organise the phenomena

of the physical, social and mental world' (p ix), he says, we ought to help pupils step into the
continuously ongoing 'learning process of mankind'. Mellin-Olsen (1987) underlines that the pupil

must recognise the tasks the teacher gives him 'as a component of an Activity' (p 105) and Vygotsky

(1979) claims that children should be helped to invent an arithmetic which is relevant to them.

The main aim of this presentation is to articulate the motive of the first kind of pedagogy, here
called 'surface pedagogy', and to show how this, as a whole not as methods used for teaching
single topics is what causes the large amount of failures in mathematics. A pedagogy akin to the

theories of Freudenthal, Mellin-Olsen and Vygotsky mentioned above, but related to
phenomenography, will be used to contrast this 'surface pedagogy'. 13Cith these kinds of pedagogy

will be analysed from the so-called 'activity theories' inspired by Vygotsky.

Phenomenography, activity theories and the non-dualistic ontology

According to phenomenographic 'non-dualistic' ontological assumptions, which like Freudenthal's

didactics are related to phenomenology, reality is neither seen as a representation of the world, nor as

a subjective construction of a world not accessible to us through our senses. Consciousness is

regarded as consisting of individual-world, or object-subject relationships, and our 'conceptions'
the units we study in phenomenography are also thought of in this way. An object, e.g. a 'maths
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problem', is never, according these assumptions, seen as a problem per se, but rather as a problem

experienced by someone, e.g. by a pupil. Similarly a subject, e.g. a pupil, is seen as a subject whose

awareness is always directed towards something, e.g. towards a 'maths problem' and towards
experiences that this problem makes him aware of (Marton and Neuman, 1990). These latter
experiences, or conceptions, of the problem depend on what the pupil experiences as the activity
within which it has arisen.

Non-dualistic assumptions do not characterise phenomenology alone. To view individual
consciousness as being a participant in social consciousness or in Vygotsky's words, in 'our co-

knowledge' (Vygotsky, cited in Leont'ev 1981) is another way of expressing non-dualistic
ontological assumptions. Vygotsky's colleague and follower, Leont'ev (1981), elaborated
Vygotsky's thoughts into so-called 'activity theories', related to the concepts: activity, action and

operation. An activity is related to a motive, while actions are directed towards goals subordinate to

this motive. The consciously performed actions are transformed little by little, into unconscious
operations encapsulated in more complex actions, and so on. These theories form the ground from

which the activities and motives of mathematics education will be scrutinised.

The proceptual divide

The part of the theory which concerns transformations of actions into operations, mirror recent

theories on procedures transformed into objects, e.g. Sfard's (1991) theory of 'reification' and the

theories about 'procepts' put forward by Gray and Tall (1994). Procepts is the denotation that these

researchers use as an amalgamation between procedure and concept, which is the result of an
encapsulation process. Through detailed videotaped interviews with pupils between 7 and 12 years of

age, they have been able to illustrate how elementary pupils, regarded by their teachers to be 'above

average', display 'proceptual thinking', while others, regarded to be below average, display
'procedural thinking' (p 9). Children who display proceptual thinking acquire 'elementary procepts'

through a lot of flexible strategies used to derive new 'facts' from a few initial ones. Conversely,

children who display procedural thinking use rigid and tiring counting procedures and hardly ever

derive new facts from the few facts they eventually learn. Gray and Tall refer to an early 'proceptual

divide' (p 9), which diffeientiates between prospective success and failure in mathematics.

In a pilot study of a phenomenographic investigation of how school beginners conceive of addition,

subtraction and of number relations (Neuman, 1987), 31 pupils, aged between 8 and 13 and regarded

by their teachers to perform below average in mathematics, were interviewed. The result of this

simple study support the theories, which later were put forward by Gray and Tall. In this study the

pupils almost always displayed a procedural behaviour pattern. This was the same when 14-17 year

old pupils and adults with 'maths difficulties' were interviewed.

Conversely, procedural behaviour was hardly ever identified among the untaught school beginners

interviewed in the main study. They found a lot of creative ways of solving word problems within the

range of 1-10, similar to the problems given to the older pupils. Sometimes these inventions resulted

in answers which were far from correct and even very peculiar. Yet, if viewed from the child's

perspective, they all held a certain logic (Neuman, 1987, 1989, 1994). Many inventions, however,
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ended up in correct, and sometimes brilliantly worked out answers (Neuman, 1992). These

inventions could be studied when the children formed them concretely, with the help of theirfingers,

structured and grouped in specific ways (and not merely used for keeping track). Some children

explained, after immediate answers, that they 'thought with their hands', afterwards they concretely

illustrated how this had been done. Others described the same strategies in words, without allusions

to their fingers. These untaught children seemed to conceive of the problems they met in the interview

as mirroring problems they might meet in everyday life, and which therefore ought to be solved in the

simplest possible way.

In a 2 year teaching experiment (Neuman, 1987, 1993, 1994), in which two of the classes that had

been interviewed were followed, the children took part in activities with the motive of preserving and

developing this conception of why one has to learn 'maths'. The experiment set out from a game

related to a story of 'The Land from Long Ago' where no 'maths' existed, but where problems

demanding some kind of 'maths' continuously turned up. In this game the children experienced

mathematics as a subject that we need, and that we have produced and still produce through

common problem solving. Through the way in which the pupils solved problems using united

efforts, they began, little by little to model numbers within the range of 1-10 as divided up into two

parts. This had already been done by some pupils in the interviews at the start of school. For all of

the pupils this concrete modelling was transformed after a while into unconscious operations, which

were encapsulated within more complex, conscious actions, when the pupils later had to deal with

addition and subtraction above the 10-limit.

The 11 pupils in these two classes, who had not been able to give any correct answers to the

subtraction problems given in the interview at the start of school were interviewed again at the end of

grade 2. By then they all used flexible 'proceptual' thinking in all problems, even in addition and

subtraction within the range of 1-100, thus passing the 10-limit. In a control group of 13 pupils with

similar results at the start of school, only one child could solve all the problems in this way, and 6

pupils continuously displayed procedural behaviour, except for in a few problems within the range 1-

10, which had probably been learned by heart.

The results of these studies give birth to three hypotheses worth further investigation. First:

'procedural behaviour' is not inborn but rather a result of traditional 'surface pedagogy'. Secondly:

'proceptual thinking' is not inborn either but is, contrary to 'procedural behaviour', rooted in
informal learning. Thirdly: 'proceptual thinking' is possible to teach, within a pedagogy where the

motive is to arrange situations that are experienced as relevant by the children themselves. This is a

motive characteristic not only of phenomenographic pedagogy, but also and first and foremost of

the 'realistic teaching tradition' (see e.g. Streefland, 1989). Pramling (1994), however, discusses

three tenets which she sees as specific to what she calls a 'developmental' phenomenographic

pedagogy: 1) to set out from knowledge of children's thinking, 2) to have a specific methodological

knowledge, 3) to have confidence in children's ability to learn from each other. The third tenet is well

known from socio-constructivist research (Cobb, Wood and Yackel, 1991; Murray, Olivier, and

Human, 1991 et al.), while the first two are more specific to phenomenography. An important aim of
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phenomenographic interview studies is to produce a knowledge of children's 'conceptions'. Using

this kind of knowledge is what the first tenet implies. The second tenet to have 'methodological

knowledge' means teaching in the 'thought provoking' ways in which phenomenographic deep-

interviews are carried out. An example of teaching applying the latter two tenets was given in my

1994 PME-presentation. Examples of deep-interviewing, will be given in this years' presentation.

Proceptual divides eliminate scores of pupils also at later levels.

The motive for presenting these examples, however, is not primarily to illustrate the nature of

phenomenographic interviews: The main motive is to elucidate how a 'surface pedagogy' seems to

give birth to proceptual divides also after the point where, at an early primary level, pupils who

'think' are differentiated from pupils who 'count'. To judge from Crowley, Thomas and Tall (1994)

algebraic teaching further exacerbates the differences between proceptual and procedural thinkers.

Here, however, the denotation 'procedural thinkers' is not used for students using 'counting
procedures' but for those displaying a 'process-oriented' behaviour of another kind, i.e. for those

who rigidly 'must' put the operation on the left and the answer on the right of the equals sign. Thus,

even pupils who express 'proceptual thinking' in the sense that they have left the use of counting

procedures might later be 'lost'. This does not only happen when algebra is introduced, but at

many other junctures too, e.g. when the pupils meet fractions or multiplication/division of decimals.

It seems as if scores of pupils are eliminated at every such 'proceptual divide'. The young, 'creative'

mathematicians' we met at the start of school; at the age of 7, evidently seem to have little possibility

of ever becoming familiar with the subject of mathematics, and still less of becoming good

mathematicians.

One 'proceptual divide' seems to occur already at the first introduction of division, the examples

illustrating the nature and roots of difficulties that eliminate pupils at such divides are taken from a.

study, in which pupils in grade 2, 3, 4 and 6 were interviewed about their conceptions of quotitive

and partitive division (Neuman, 1991). An astonishing observation in this study was that 'proceptual'

3rd graders, interested in forming derivation strategies to extend their store of 'known products' in

multiplication, could sometimes after having been introduced to division give up attempts to make

sense of the problems they solved, in their strife to invent such strategies. Conversely, the 6th
graders could often give up the easy way of using a 'known product' in division, for the more
laborious method of putting the numbers together according to an algorithm. Another confusing

phenomenon was that this kind of behaviour was related to partitive division only.

My interpretation of this behaviour was that it was rooted in the way division is usually introduced

in Sweden: through 'naked number sentences' and the rule: 'Find out how many times the divisor

goes into the dividend'. 'Naked number sentences' related to this instruction do not demand any

understanding of the different roles played by the divisor in quotitive and partitive division. When the

pupils became acquainted with the word problems in the interviews the rule to 'measure the dividend

by the divisor' did not fit in with the role played by the divisor in partitive division. It is, then, sense-

less to ask: 'Find out how many times 7 children go into 28 marbles' in order to find out how many

marbles each of the seven children will get if they have 28 marbles to share. As many as six of the ten
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pupils in grade 6 - who immediately solved the quotitive division using a known product (or in one

case using a derivation strategy) and who illustrated in other ways too, that they knew the

multiplication table' tried an algorithm for the partitive problem. (That algorithms could be used,

even if they weren't understood, seemed to be self evident to all the pupils.) The 'proceptual' 3rd

graders, however, did not yet reflect upon the senselessness of 'measuring a numberpf marbles with

a number of children'. They were too occupied with facilitating the repeated addition they used to

divide. In the next section one 3rd grader and one 6th grader will exemplify tile nature of the

difficulties that many pupils seemed to experience when they met partitive division introduced as a

part of the 'surface pedagogy' representative of traditional teaching.

Pitfalls at the introduction of division - two examples
A phenomenographic interview is thought to be a learning situation for the interviewer as well as

for the interviewees, a situation in which the interviewer learns about the conceptions of the

interviewees, and where the intention is that the interviewees - through the questions posed by the

interviewer - will become conscious of the 'pre-conceived' ideas from which they have set out.

Ever since the first interviews that were made, I had seen drawings and heard utterances made by

2nd and 3rd graders who had not yet been taught division, these made me aware of the fact that

before pupils are introduced to division they find it natural to 'measure the dividend by the divisor'

also in partitive division. The 2nd graders could, for example, solve the task with the 28 marbles and

the 7 children, saying: '7 marbles, one marble each; 14, two each...' and so on, finally arriving at '28

marbles, four marbles each'. Or they could make drawings mirroring this thought (see below). They

formed ratio-tables through which the dividend was 'measured', not by the number within each part,

but by the number dealt out in each round, the number the divisor represented to these pupils in

partitive division.

dicV ado vflve 614 al22ert-e"°-&--41;Q-'srtra-r4
0000000000 oaf
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Erik says, after having marked seven marbles: 'I'd better write a one, so I remember Karin shares out 28

that they've got one each.' After having marked seven more he writes 2, and so on ... marbles between 7 boys

Kalle, however, is a 3rd grader who some weeks ago was introduced to division. When presented

with the task in which 28 marbles are divided among 7 children he immediately answers 'Four

marbles each'. When asked how he knew the answer, he replies:

K: First I do ... seven and seven, that's fourteen ... then fourteen and fourteen's twenty-eight.

wonder if it is just the task: 'Find out how many sevens there are in 28?' that Kalle solves

through his addition, which he has made easier by 'doubling'. Or has he thought of a dealing out

situation of the kind the 2nd graders illustrated: 'seven marbles in each round' until the marbles run

out. A long dialogue ensues:

I: Why did you take seven?
K: 'cause ... there were seven boys that were sharing
I: Now, when you've taken this first seven, what do you do with them then?
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K: Mmm
I: What happens to them? ... ... when you've taken them? ...
K: When I've taken seven marbles??

K: Then ... ... well, then there're ... well, what can I say?

Kalle goes quiet. He does not seem to be aware of what lies behind his decision to take seven four

times. I try to confront him with an experience of a fair share situation, trying to find out if he
experiences the semantics of the problem at all, and Kalle tries to step away from the rule he has been

taught for division. When replacing it with an everyday experience of sharing, however, he first

thinks of a situation where seven marbles are dealt out to each child, a dealing out experience related

to quotitive division. The dialogue goes on like this:

K: Then another's got to take, then

Kalle becomes silent a second time. I interpret his answer to mean that one boy has got seven

marbles and that the next one now gets a similar amount. To keep the dialogue going I say:

I: And then another boy gets to take seven marbles?
K: Yes ... ... just a minute ... Yees, yeeees

Kalle might already have continued in his line of thought, dealing out the last 'two sevens' to two

more boys, when he says 'just a minute ...'. Then he might have become aware that three boys do

not yet have their share. He is quiet for a long while. Then he says:

K: BUt it might be wrong ...

Kalle becomes silent again. Finally I say:

I: Might it be wrong?... You wrote four marbles each. And I wonder, how did you know that?
K: Mm m. 'Cause ... mm mm It can't be that ...
I: Can't it?
K: Well Yeees! 'Cause I've taken seven four times!

Kalle again seems to have found an acceptable point of departure for his line of thought. But what

does it look like? Is it: "Seven marbles four times, one marble to each boy in each round"? Or is it:

This is the kind of problem you can solve through working out what makes twenty-eight in the

'seven-times table'? I want to know, and ask:
I: 'And what did you do when ... Each time you took seven ... what did you do with them? ...
K: I put them together

Kalle is back in his repeated addition again, I try to explain in a better way, what I want to know:

I: But now, if you had thought in this way in a real fair share situation ... ... that you'd do that
... Here they are ... ... the twenty-eight marbles lets say ... ... in a little bowl. Then you

take seven, and those seven boys are sitting here (I point around the table). What would you do
with the seven marbles you took?

Again Kalle is forced to turn back to reality, and again the 'dealing out' experience related to

quotitive division is thematised: "Seven in each part seven to each boy".

K: I give 'em to a boy ...
I: To a boy, all seven? ...

Kalle probably remembers that he has already rejected this idea, and a new theme is actualised:

K: No, I'd take four marbles ...

BEST COPY AVAILABLE
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The new theme is closely related to the conception What might 1/7 of 28 be?', this was also

expressed by some 2nd graders. But Kalle probably doesn't estimate what 1/7 of 28 is and check this

estimation, as the 2nd graders who solved the problem had done with great effort. He certainly sets

out from the answer four, that he got when he first solved the problem. Maybe he then tried to check

if all the 28 marbles would be used up if he took four at a time. Anyway, he stops speaking again. It

is difficult to add four seven times, and maybe Kalle thinks this laborious addition is not worth the

trouble. Nevertheless, he hesitates again at the answer 'four' that he has written on his paper, asking

'is that right?'. And again I assert that it is correct, before I resume the dialogue:

I: But I just want to know how you actually think this out ... and then see that it's four each?
That's twenty-eight marbles ... ... First you took seven ...
K: Mm m
I: So the seven boys are sitting here ... ... Just put them in the middle of the table ... ? Or
what are you doing with them? ...
K: I'm putting 'em in a pile and I'll take another seven ...
I: Yes, but these poor boys, they were supposed to share the marbles, they can't be very
pleased that the marbles are here in four piles? (I point to the middle of the table four times)
'K: Noo take all the marbles ... ... in ... ... yes, yeah ... I'll take all the
marbles (inaudible)... ... then share them out ... 'n' then there'll be ... four each ...
I: How do you know that then? What do you do to share them out? ...
K: I'll put 'em mm ... one to every first like that ... ... then I'll do it as long as I can

... that'll he four to each of them ... .
In the end, the experience of 'giving out one at a time' is thematised. But is it related at all to the

idea of seven in each round, which would make it sensible to solve the problem through the repeated

addition of seven? I find it difficult to formulatemore questions, without leading Kalle to the idea

'seven in each round'. Finally I say:

/: Mm mm I don't really know now ... ... really what you mean ... ... ...Because all
twenty-eight were there, weren't they? (Again I point to the middle of the table four times.) Did
you take them again? Did you put them back in the bowl?
K: No, I take one from the pile and give it to one boy ... (What Kalle now says is impossible to
hear on the tape, but according to my protocol Kalle first pretends to take one of the four piles
indicated by me, sharing out one marble at a time while he points to each of the boys in turn, as
he imagines them sitting round the table) ...'n then / take ... (now indicating the next pile).

Eventually Kalle seems to relate his repeated addition of 7, compressed through a 'doubling', to an

experience of 'giving out seven each round, one to each boy'. If this is so, the interview situation has

become a learning situation for him, making him aware that adding seven four times can be a mean-

ingful way of solving a partitive division task in which 28 marbles are to be shared between 7 boys.

The older the pupils were, however, the harder it was to make them conscious of an experience of

sharing as related to partitive division. For example, Marita, a 6th-grader, directly solves a quotitive

problem in which 42 buns are packed into bags of 6 buns each, answering 'Seven, since seven times

six is 42'. In the partitive problem, however, in her case 4 children with 28 marbles to share she

tries a long division. She puts the dividend and the divisor in the wrong places, arriving at the answer

0.14 marbles each. Understanding that this cannot be the right answer she supposes she has chosbn

the wrong algorithm. So, she tries a multiplication algorithm, arriving at 112 marbles each, which she

also experiences as unreasonable. Finally, for some reason she multiplies 28 by 6. Then she does not

know how to handle the carried digits, and gives up, saying that she cannot solve the problem. When

asked if she cannot find any other way of solving it instead of bothering with 'these' (the column
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algorithms) she says 'Well, seven ...', but immediately changesher mind, adding 'No, that's not

right either'. Asked by the interviewer why it is not right, she says again: 'No, it can't be like that,

can it'. As the interviewer is eager to find out what lies behind the correct answer 'Seven', she again

insists: 'But you actually said seven ... you must have thought it out in some way ... how were you

thinking?' - 'I just thought 7 x 4 is 28 ...', Marita answers, still rejecting this answer. My

interpretation of her behaviour is that an answer acquired with the help of the rule 'Find out how

many times 4 children go into 28 marbles' does not make sense to her. She probably finds it safer to

use an algorithm, which she knows ought to lead to the right answer when correctly performed, even

if one does not understand why.

Discussion
To avoid 'proceptual divides' and to give all pupils the idea of mathematics as a subject which is

meaningful, thrilling and full of beauty, the motive of the whole activity called 'mathematics

education' must be changed and not only a few methods used to teach a few single topics. From the

first day at school, maths activity must have the motive of giving pupils an experience of themselves

as participants in the never ending learning process of mankind, in which we together invent

mathematical concepts, and ideas as tools for organising phenomena in our world.
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Abstract

The reported study is part of a year long first-grade teaching experiment conducted with six-year-old
children which focused on the development and implementation of instructional activities. These
activities were developed in collaboration with the classroom teacher and were intended to support the
students' development of additive and subtractive thinking strategies. The discussion first elaborates
constructs used in the analysis procedures that emerged from previous research efforts to coordinate
psychological and sociological perspectives. We then provide an overview of the current research
efforts which includes outlining the data analysis procedures and summarizing two of the five
instructional sequences. Preliminary findings of student learning indicate that the students made
considerable progress during the first half of the school year. In particular, the students appeared to
shift from predominantly using counting strategies to routinely using non-counting strategies (e.g.,
going-through-ten, referencing doubles). Final comments point to subsequent analysis which will
account for the students' mathematical progress.

Introduction

This paper provides an overview of a first-grade teaching experiment that was conducted during

the 1993-1994 school year. Theoretically, the overall aim of this research effort was to investigate the

possibility of accounting for mathematical learning in the social situation of the classroom by
coordinating sociological and psychological perspectives (e.g., Balacheff, 1990; Cobb &
Bausersfeld, in press; De Corte, Greer, & Verschaffel, in press). As part of the investigation,
particular attention was given to the development and use of instructional activities based on the

theory of Realistic Mathematics Education (RME) (cf. Gravemeijer, 1994; Streefland 1991; Treffers,

1987). In this discussion we summarize the project by giving a brief description of the data corpus

and two of five instructional sequences that were developed in collaboration with the classroom

teacher. We then outline the analysis procedures and present some of the preliminary findings.

Before we begin this discussion, it is necessary to situate this work in the previous as well as our

ongoing research efforts.

Previous research efforts have focused on the more general classroom social norms for both

whole class discussions and small group work. Such norms for whole class discussions included

"explaining and justifying solutions, attempting to make sense of explanations given by others,

indicating agreement or disagreement, and questioning alternatives in situations where a conflict in

interpretations or solutions has become apparent " (Cobb & Yackel, 1993, p. 11). These norms are

not specific to the mathematics classroom but apply to any subject matter area. That is, one would

hope that the teacher might expect students to explain their reasoning when they engage in discussions

of historical events or works of literature. These social norms have as their psychological correlates,

The research reported in this paper was supported by the National Science Foundation under grant
number RED-9353587: All opinions expressed are solely those of the authors.
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the teacher's and individual student's beliefs about their own and others' roles in the classroom

(Cobb, Yackel & Wood, 1993). For instance, a student's response to the teacher's request for an

explanation (the teacher's expectation) might implicitly indicate the student's obligation to explain his

solution process rather than merely state a result. Prior analyses indicate that, during the course of

whole class discussions, the individual students reorganize their beliefs about their own roles as they

participate in the interactive constitution of the norms that both constrain and are shaped by their

beliefs (Cobb et al., 1993). In general, the analysis of social norms delineates the evolving
participation structure realized in the classroom (cf. Erickson, 1986; Lampert, 1990).

A second phase of the prior research focused on the normative aspects of classroom discussions

that are specific to the students' mathematical activity. These norm have previously been called

sociomathematical norms (Yackel & Cobb, 1993). Sociomathematical norms have as their

psychological correlates individual students' beliefs and values about engaging in mathematical

activity. These norms include what counts as a different mathematical solution, what counts as a

sophisticated mathematical solution, what counts as an efficient mathematical solution, what counts as

an acceptable mathematical explanation and what counts as an acceptable mathematical justification. It

is claimed that students develop specific mathematical beliefs and values as they participate in the

interactive constitution of these sociomathematical norms. For example, after the student has
explained his or her thinking, the teacher might ask other students if they solved the task in a different

way--the teacher's explicit expectation for the students' contributions. It is in such situations that

what counts as a different mathematical solution is renegotiated (Yackel & Cobb, 1993). In

particular, the teacher and students clarify what is a difference that makes a mathematical difference

as they respond to contributions that are proposed as being different.

Our current research efforts address a third aspect of the classroom microculture: the taken-as-

shared mathematical practices established by the classroom community. The corresponding
psychological correlate is taken to be individual students' mathematical conceptions and actions (Cobb

& Yackel, 1993). Specifically, students develop their individual mathematical ways of knowing as

they contribute to the establishment of communal mathematical practices such as ways of posing

tasks, interpreting tasks, solving tasks, and symbolizing. Conversely, these practices both enable

and constrain students' mathematical ways of knowing. These mathematical practices are said to be

taken-as-shared rather than shared because there are typically significant qualitative differences in

individual students' mathematical interpretations. These interpretations fit for the purposes at hand in

that differences do not necessarily become apparent as students attempt to coordinate their activities.

The Teaching Experiment

Data Corpus

Data consists of videotaped individual interviews of all 18 six-year-old children in the class in

September, December, and January; video-recordings of an additional interview conducted with ten

of the children in November; video-recordings of 47 mathematics classes made using two cameras;

the students' worksheets; and daily field notes that summarize the events of the classroom.
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Interview Sessions

To document the students' mathematical activity over time, each of the eighteen first-grade

students were interviewed in September, before the first instructional sequence began; in December at

the completion of the second instructional sequence; and in January. Two researchers were present

during these interviews, one researcher conducted the interview with the student while the other

researcher completed an observation log to document the student's activity. The tasks used included

horizontal number sentences, hidden collections tasks (cf. Steffe et al., 1983), thinking or derived

fact tasks, and context problems. Although the interviews were structured so that these tasks could

be presented systematically, the interviewer varied the task selection and follow-up questions to

explore students' current conceptual understandings.

Instructional Sequences

The two instructional sequences that were developed between September and December are called

Patterns and Partitioning and the Arithmetic Rack. The development of the first of these sequences

was precipitated by the preliminary analysis of the pre-interviews conducted in September. Six of the

18 students had considerable difficulty in using their fingers as perceptual substitutes for collections

when they attempted to solve additive tasks involving quantities of five or less. As a consequence, in

collaboration with the classroom teacher, we developed an initial instructional sequence that
highlighted flexible finger patterns, spatial pattems, and conceptual partitioning and recomposing

collections of up to ten items. The Arithmetic Rack instructional sequence was developed once this

preliminary sequence had been completed. Before outlining the Arithmetic Rack instructional

sequence we clarify the domain-specific instructional theory of Realistic Mathematics Education

(RME) that underpinned the development of instructional activities.

In the elaboration of RME proposed by Gravemeijer (1994; in press-a; in press-b) an instructional

sequence involves (a) informal problem solving situations that are experientially real to students and

in which they can engage in informal mathematical activity, and (b) the development of student-

generated models of their informal mathematical activity. These models, which might consist of

drawings, pictures, non-standard notation, computer graphics, or conventional notation,
subsequently take on a life of their own and become (c) models for mathematical reasoning. This

sequence of idealized development supports students' transition to (d) more formal mathematical

activity in which their use of conventional symbols signifies the conceptual manipulation of abstract

and yet personally-real mathematical objects. It should be stressed that this idealization involves a

series of conjectures about how the activities might support student mathematical development when

they are realized in the classroom. These activities are not, however, "pre-programmed"
(Gravemeijer, in press-a; in press-b) and do not constitute what is often referred to as ready-made

curricula. Further, the process by which these activities are realized in interaction in the classroom

depends on individual students' contributions. For analytical purposes, a major goal is to understand

how the activities are interactively constituted between the teacher and the students as they engage in

mathematical activity.

Arithmetic Rack Instructional Sequence. The intent of this sequence was to support students'
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development of additive and subtractive thinking strategies. The rack consists of two rods on each of

which are five red beads and five white beads (Treffers, 1990; Gravemeijer, in press-a; see Figure 1).

(a) (b)

1..00000.00001
Figure 1. (a) The starting configuration in which all the beads are placed to the right, and (b) the
arithmetic rack showing a collection of seven beads.

To use the arithmetic rack, the student moves beads from the right to the left either by counting

individual beads or by moving several beads at a time. For instance, a student might show seven

(beads) by moving three beads on the top and three beads on the bottom, and then move an additional

bead.
The arithmetic rack was designed to fit with the students' previously-documented non-counting

strategies. Initially, we hoped that students might create perceptually-based numerical composites of

some type when they acted with the rack. Suppose, for instance that a student has made a collection

of nine beads by moving five beads on the top row and four beads on the bottom row, and wants to

add more beads to make 16 (see Figure 2a). To complete the task, the student might first move five

beads on the top row and then move two more beads from the bottom row (see Figure 2a).
Alternatively, the student might first move one more bead on the bottom row and then move three on

the top row and three on the bottom row (See Figure 2b).

(a) (b)

41001141441:0 11:11:00000°--0001
Figure 2. Strategies for showing 16 using the arithmetic rack: (a) going-through-ten, and
(b) referencing doubles.

From the observer's viewpoint, the use of a going-through-ten strategy is implicit in the student's

activity in the first example, and the use of a doubles strategy is implicit in the second example. The

instructional challenge is then to guide the emergence of such aspects of children's activity as explicit

topics of conversation in the classroom.
The Arithmetic Rack Instructional Sequence was developed over a 9 week period and involved

for a total of 25 lessons. A sequence of activities was developed that included flashing and showing

various numbers, bingo, addition and subtraction problem situations, imagery addition and
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subtraction, imagery bingo, and anticipation addition and subtraction.

The initial activities were situated within the scenario of a double decker bus (van den Brink,

1989), that had developed during the Partitioning and Patterning Instructional Sequence. The top and

bottom rows on the arithmetic rack signify passengers on the upper and lower levels of the bus,

respectively. Thus, various combinations of beads represent different ways in which people might sit

on the bus. For example, tasks that involve showing various numbers might entail the teacher telling

the students that three people were on the upper level and four were on the lower level and asking the

students how many people were on the bus. A follow up activity might involve the students showing

different ways seven people could be sitting on the bus.

The addition and subtraction problem situations differ from these initial tasks in that the teacher

first might tell the students that a certain number of people are on the bus, and then tell them that some

people either got on or off the bus. The students' task is to determine how many people are now on

the bus. For example, the teacher might tell the students that ten people are on the bus and then six

more people got on the bus. A student who has shown the initial ten as five on the top and five on the

bottom might move the beads in one of several ways. He or she could move five more beads on the

top and one bead on the bottom, and then enumerate the resulting configuration as 16 without

counting. It is important to stress that both here and elsewhere in the sequence, students are obliged

to explain both how they acted and why they chose to do so. In this regard, the students' activity is

located within a classroom microculture that considers mathematical activity to be eminently
discussable.

In subsequent activities, the students were first encouraged to imagine and later to anticipate the

number of beads (people) that must be added or subtracted to make a certain number. For instance,

the students might be asked to show a certain number of the people on the bus. They might then be

asked to imagine how they would move beads to show that, say, 11 people got off the bus before

actually doing so.

In the final set of instructional activities, explicit reference was made to neither the double decker

bus nor the arithmetic rack. Instead, tasks were posed in a variety of contexts such as money tasks

using various denominations of coins, purchasing various items, the single decker bus, money in a

piggy-bank, and cookies in a cookie jar. For example, to pose tasks using the scenario of the cookies

in the cookie jar, the teacher might draw a cookie jar and indicate the number of cookies in it by

writing a numeral on the jar. She might then explain that a certain number of cookies have been

placed in or taken from the cookie jar. The students are to determine how many cookies are now in

the cookie jar. While these tasks did not explicitly reference the arithmetic rack, some of the students

chose to use the arithmetic rack whereas others produced purely conceptual thinking strategy
solutions. By this point in the sequence, students were encouraged to record their solution processes

so that other children could understand their thinking. These records, which combined conventional

and non-conventional elements, then became an explicit topic of conversation in whole class
discussions.

With regard to RME, it was hoped that the arithmetic rack would initially serve as a model of the

3 260

268



double decker bus scenario as students solved various tasks. Later it was conjectured that the

arithmetic rack would function as a model for their arithmetical reasoning as they solved a variety of

problems until, eventually, the students might use various thinking strategies without either imagining

or using the arithmetic rack.

Data Analysis Procedures
The data analysis procedures progressed in three phases. The first phase of analysis focused on

the individual interview sessions for all 18 children and sought to determine the nature and the quality

of their solution methods. As a part of this process, changes in the students' solution methods
between interview sessions were documented. The analysis drew on psychological constructs

developed by Steffe et al. (1983) and Steffe and Cobb (1988), as well as those developed by Netiman

(1987). Constructs developed by Steffe and his colleagues were used to identify the various counting

strategies the students used. Neuman's work proved to be relevant in that she has reported detailed

accounts of non-counting solutions that involve patterning and grouping. In the second phase of

analysis, in-depth case studies were developed of four of the students. The case studies provide snap

shots of the four students' conceptual progress over time and complement the summary of all 18

students' mathematical activity.

The third phase of analysis, which is currently in progress, involves analyzing the videotaped .

mathematics lessons from September through December together with and three lessons conducted in

January. The normative aspects of the classroom participation structure will be documented first.

This will include identifying the general social norms and sociomathematical norms to account for the

classroom microculture. This will then be taken as the local social situation 'within which both the

classroom mathematical practices and the four target students' individual mathematical meanings

evolved.

Findings

Analysis of the interview sessions indicates that all 18 students made considerable progress in the

ways that they interpreted and attempted to solve a range of tasks. One of the most profound finding

relates to the shift that many of the students made from using counting strategies to using non-
counting strategies (e.g., going-through-ten, referencing doubles). Further, the flexibility with which

the children used these strategies to solve a wide variety of tasks indicates that they carried the
significance of acting on arithmetical objects. During the September interview session, all of the

students employed various counting strategies that ranged from counting-all using their fingers to

counting-on or counting-down, subvocally. At least six of the students experienced considerable
difficulty when they attempted to solve small number sentences (e.g., 5 - 3 = _) posed in a story

context. Further, only two students spontaneously employed non-counting strategies to solve large,

number sentences (e.g., related 6 + 8 = to 6 + 7 = 13). Four other students employed non-
counting strategies for small number sentences when prompted to do so by the interviewer (e.g.,

related 4 + 3 = to 4 + 4 = 8). By way of contrast, during the December interview session, 11
students used non-counting strategies routinely to solve all or almost all the tasks and a further 5
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students used non-counting strategies some of the time to solve a range of tasks.

These developments can be illustrated by considering the solution methods employed by one of

the students, Lori, in the September and December interview sessions. In the September interview

session, Lori frequently counted-on or counted-down to solve tasks by using spatial patterns or using

sophisticated finger patterns to know when to stop counting. For example, Lori gave an answer of

13 for the number sentence 7 + 6 = . When prompted, she explained, "Urn, I have a 7 and ...I...I

remembered the pattern how that would be one dot here and one dot here and one dot here and one

dot here and that would make 4." She went on to explain "So I count 7...6...8, 9, 10, 11 [as she

pointed to make a spatial pattern for four and said the number words 8, 9, 10, 11, synchronously]

12, 13 [pointed to two more locations as she said the number words 12 and 13]." By way of
contrast, during the December interview session, Lori routinely used non-counting strategies such as

referencing doubles and going-through-ten to solve a variety of tasks. For instance, she immediately

gave an answer of 17 to the horizontal number sentence 8 + 9 = . She first explained that she

"broke-up" the eight into seven and one (i.e., 7 + 1 = 8) and added the 1 and the 9 to make 10. She

then said that she had 7 left and that made 17 (i.e., 10 + 7 = 17). Lori appeared to have made a

significance shift from counting and referencing spatial patterns in the September interview session to

routinely employing non-counting strategies in the December interview session. Her progress is

representative of the progress made by most of the other students in the classroom.

ConclusiQn

In this paper, we have attempted to provide an overview of a first-grade classroom teaching

experiment that was conducted during the 1993-1994 school year. These preliminary remarks have

been offered, in part, as a way of documenting these research efforts. We have provided a general

summary of the students' progress over the first several months of the school year in which two

instructional sequences, the Patterns and Partitioning and the Arithmetic Rack were developed in

collaboration with the classroom teacher. The findings reported here do not, however, document the

process by which the children's arithmetical reasoning evolved. The next phase of the analysis will

involve accounting for the students' conceptual progress as they participated in and contributed to the

evolution of the classroom mathematical practices established by the classroom community. In

completing this analysis, we hope to articulate possible ways of supporting young children's
arithmetical learning as it occurs in the social setting of the classroom.

References

Balacheff, N. (1990). Future perspectives for research in the psychology of mathematics education.
In P. Nesher and J. Kilpatrick (Eds.) Mathematics and cognition (pp. 135-148). Cambridge:
Cambridge University Press.

Cobb, P., & Bauersfeld, H. (in press). The emergence of mathematical meaning: Interaction in
classroom cultures. Dordrecht, Netherlands: Kluwer Academic Press.

3 262

270



Cobb, P., Wood, T., & Yackel, E. (1993). Discourse, Mathematical thinking, and classroom
practice. In E. A. Forman, N. Minick, & C. A. Stone (Eds.), Contexts for learning (91-119).
New York: Oxford University Press.

Cobb, P., & Yackel, E. (in press). A constructivist perspective on the culture of the mathematics
classroom. In F. Seeger, J. Voigt, & U. Waschescio (Eds.), The culture of the mathematics
classroom: Analyses and changes.

De Corte, E., Greer, B., & Verschaffel, L. (in press). Mathematics learning and.teaching. In D.
Berliner & R Calfee (Eds.) Handbook of educational psychology. New York: Macmillan.

Erickson, F. (1986). Qualitative methods in research on teaching. In M. C. Wittrock (Ed.), The
handbook of research on teaching (3rd ed., pp. 119-161). New York: Macmillan.

Gravemeijer, K. P. E. (1994). Educational development and developmental research. Journal for
Research in Mathematics Education, 2(5), 443-471.

Gravemeijer, K. P. E. (in press-a). Instructional design as a learning process: Reconstructing the
development of an elementary school mathematics course. Educational Studies in Mathematics
Education.

Gravemeijer, K. P. E. (in press-b). Mediating between concrete and abstract. In T. Numes &
P.Bryant (Eds.), How do children learn mathematics? Hillsdale, NJ: Lawrence Erlbaum
Associates.

Lampert, M. (1990). When the problem is not the questions and the solution is not the answer:
Mathematical knowing and teaching. American Educational Research Journal, 2/, 29-63.

Neuman, D. (1987). The origin of arithmetic skills: a phenomeno_graphic approach. Goteborg: Acta
Universitatis Gothoburgensis.

Steffe, L. P., Cobb, P., & Richards, J. (1983). Application of the theory of counting types:
Addition and subtraction. In L. P. Steffe, E. von Glasersfeld, J. Richards, & P. Cobb (Eds.),
Children's counting types: Philosophy. theory. and application (pp. 77-111). New York: Praeger
Scientific.

Steffe, L. P., & Cobb, P. (1988). Construction of arithmetical meanings and strategies. New York:
Springer-Verlag.

Streefland, L. (1991). Fractions in realistic mathematics education. A paradigm of developmental
research. Dordrecht, Netherlands: Kluwer.

Treffers, A. (1987). Three dimensions: a model of goal and theory description in mathematical
instruction-The Wiskobas Project. Dordrecht, Netherlands: Reidel.

Treffers, A. (1990). Reken tot twintig met het rekenrek (Addition and subtraction up to twenty with
the arithmetic rack). Willem Batens, IQ (1), 35-45.

van den Brink, F. J. (1989). Realistisch rekenonderwijs aan jonge kinderer. Utrecht, Netherlands:
Vakgroep Onderzoek Wiskundeonderwijs & Onderwijscomputer Centrum, Rijksuniversiteit
Utrecht.

Yackel, E., & Cobb, P. (1993). Sociomathematical norms, argumentation and -autonomy in
mathematics. Paper presented at the Annual Meeting of the American Educational Research
Association, Atlanta, GA.

3 263

271



CLASSROOM SOCIOMATHEMATICAL NORMS AND INTELLECTUAL AUTONOMY

Erna Yackel Paul Cobb
Purdue University Calumet Vanderbilt University

The analysis presented in this paper focuses on normative aspects of mathematical discussions that are
specific to students' mathematical activity. This extension of our previous work on general classroom
social norms that sustain inquiry-based discussion and argumentation to sociomathematical norms
places special emphasis on the mathematical aspects of the mathematics classroom. In the process,
we clarify how students come to develop a mathematical disposition and account for students'
development of intellectual autonomy in mathematics. In addition, the teacher's role as a
representative of the mathematical community is clarified.

The purpose of this paper is to set forth a way of interpreting classroom life that aims to

account for how students develop specifically mathematical beliefs and values and consequently how

they become intellectual autonomous in mathematics. To that end, the focus is on classroom norms

that we call sociomathematical norms (Yackel & Cobb, 1993). These norms are distinct from general

classroom social norms in that they are specific to the mathematical aspects of students' activity.

Sociomathematical Norms

In the course of our work, we have collaborated with a group of second- and third-grade

teachers to help them radically revise the way they teach mathematics. Instruction in project

classrooms typically consists of teacher-led discussions of problems posed in a whole class setting,

collaborative small group work between pairs of children, and follow-up whole class discussions

where children explain and justify the interpretations and solutions they develop during small group

work. The approach we have taken reflects the view that mathematical learning is both a process of

active individual construction (von Olasersfeld, 1984) and a process of acculturation into the

mathematical practices of wider society (Bauersfeld, in press).

Our prior research has included analyzing the process by which teachers initiate and guide the

development of social norms that sustain classroom microcultures characterized by explanation,

justification, and argumentation (Cobb, Yackel, & Wood, 1989; Yackel, Cobb, & Wood, 1991).

Norms of this type are, however, general classroom social norms that apply to any subject matter area

and are not unique to mathematics. For example, students should ideally challenge others' thinking

and justify their own interpretations in science or literature classes as well as in mathematics. In this

paper we extend our previous work on general classroom norms by focusing on normative aspects of

mathematics discussions specific to student's mathematical activity. To clarify this distinction, we

will speak of sociomathematical norms rather than social norms.

Sociomathematical norms include normative understandings of what counts as a different

solution, a sophisticated solution, and an efficient solution and what counts as an acceptable

explanation and justification. Issues concerning what counts as different, sophisticated, and efficient

The research reported in this paper was supported by the National Science Foundation under grant
numbers DMS-9057141, RED-9353587 and MDR 885-0560 and by the James S. McDonnell
Foundation. All opinions expressed are solely those of the authors.
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solutions involve a taken-as-shared sense of when it is appropriate to contribute to a discussion. In

contrast, the sociomathematical norm of what counts as an acceptable explanation and justification

deals with the actual process by which students contribute. In this paper we restrict the discussion of

sociomathematical norms to the latter.

Since teachers with whom we collaborated were attempting to establish inquiry mathematics

traditions in their classrooms, acceptable explanations and justifications had to involve described

actions on mathematical objects rather than procedural instructions (Cobb, Wood, Yackel, & McNeal,

1992). For example, describing manipulation of numerals would not be acceptable. However, it was

not sufficient for a student to merely describe personally-real mathematical actions. Crucially, to be

acceptable, other students had to be able to interpret the explanation in terms of actions on

mathematical objects that were experientially-real to them. Thus, the currently taken-as-shared basis

for mathematical communication served as the backdrop against which students explained and

justified their thinking. Conversely, it was by means of mathematical argumentation that this

constraining background reality itself evolved. We will therefore argue that the process of

argumentation and the taken-as-shared basis for communication were reflexively related.

The theoretical constructs were developed by analyzing data from a second-grade classroom in

which we conducted a year-long teaching experiment. Data from the teaching experiment include

video-recordings of all mathematics lessons for the entire school year and of individual interviews

conducted with each student in the class at the beginning, middle, and end of the school year. Copies

of students' written work, and field notes are additional data sources. Sociomathematical norms are

established in all classrooms regardless of instructional tradition. In this paper we limit our

discussion to classrooms that follow an inquiry tradition because our purpose is to indicate the

potential of the constructs for clarifying how students might develop mathematical beliefs and values

that are consistent with the current reform movement and how they become intellectual autonomous in

mathematics.

Theoretical Perspectives

Our theoretical perspective is derived from constructivism (von Glasersfeld, 1984), symbolic

interactionism (Blumer, 1969), and ethnomethodology (Leiter, 1980; Mehan & Wood, 1975). We

began the project intending to focus on learning primarily from a cognitive perspective, with

constructivism as a guiding framework. However, as we attempted to make sense of our experiences

in the classroom, it was apparent that we needed to broaden our interpretative stance by developing a

sociological perspective on mathematical activity. For this purpose, we drew on constructs derived

from symbolic interactionism and ethnomethodology. We were then able to account for and explicate

the development of general classroom social norms. These same constructs proved critical to our

development of the notion of sociomathematical norms.

Bauersfeld (1988) and Voigt (1992) have elaborated the relevance of interactionist

perspectives for mathematics education research. A basic assumption of interactionism is that cultural
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and social processes are integral to mathematical activity. This view, which is increasingly accepted

by the mathematics education community (Cobb, 1990; Eisenhart, 1988), is stated succinctly by

Bauersfeld (in press).
mhe understanding of learning and teaching mathematics ... support[s] a model of

enculturation rather than a model of transmitting knowledge. Participating in the processes of

a mathematics classroom is participating in a culture of using mathematics. The many skills,

which an observer can identify and will take as the main performance of the culture, form the

procedural surface only. These are the bricks of the building, but the design for the house of

mathematizing is processed on another level. As it is with cultures, the core of what is learned

through participation is when to do what and how to do it.... [T]he core part of the school

mathematics enculturation comes to effect on the meta-level and is 'learned' indirectly. (p. 24)

In this view, the development of individuals' reasoning and sense-making processes cannot be

separated from their participation in the interactive constitution of taken-as-shared mathematical

meanings.

Voigt (1992) argues that, of the various theoretical approaches to social interaction, the

symbolic interactionist approach is particularly useful when studying children's learning in inquiry

mathematics classrooms because it emphasizes the individual's sense making processes as well as the

social processes. Thus, rather than attempting to deduce an individual's learning from social and

cultural processes or vice versa, it treats "subjective ideas as becoming compatible with culture and

with intersubjective knowledge like mathematics" (Voigt, 1992, p. 11). Individuals are therefore

seen to develop their personal understandings as they participate in negotiating classroom norms,

including those that are specific to mathematics.

The construct of reflexivity from ethnomethodology (Leiter, 1980; Mehan and Wood, 1975)

is especially useful for clarifying how sociomathematical norms and goals and beliefs about

mathematical activity and learning evolve together as a dynamic system. Methodologically, both

general social norms and sociomathematical norms are inferred by identifying regularities in patterns

of social interaction. With regard to sociomathematical norms, what becomes mathematically

normative in a classroom is constrained by the current goals, beliefs, suppositions, and assumptions

of the classroom participants. At the same time these goals and largely implicit understandings are

themselves influenced by what is legitimized as acceptable mathematical activity. It is in this sense

that we say sociomathematical norms and goals and beliefs about mathematical activity and learning

are reflexively related.

The Interactive Constitution of What Counts as an Acceptable Explanation and Justification

To elaborate the notion of sociomathematical norms we consider how the teacher and students

in an inquiry mathematics classroom interactively constitute normative understandings of what counts

as an acceptable explanation and justification and thus extend and clarify their taken-as-shared basis

for communication.. Viewed as a communicative act, explaining has as its purpose clarifying aspects

of one's (mathematical) thinking that might not be apparent to others.
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A Mathematical Basis for Explanations
A preliminary step in children's developing understanding of what constitutes anacceptable

mathematical explanation is that they understand that the basis for their actions should be mathematical

rather than status-based. Developing this preliminary understanding is not a trivial matter, especially

since children are often socialized in school to rely on social cues for evaluation and on authority-

based rationales. For example, in many classrooms it is appropriate for a child to infer that his

answer is incorrect if the teacher questions it. In the classrooms that we have studied, one of the

expectations is that children explain their solution methods to each other in small group work and in

whole class discussions. However, most of the children were experiencing inquiry-based instruction

for the first time and has little basis for knowing what types of rationales might be acceptable. In their

prior experience of doing mathematics in school their teachers were typically the only members of the

classroom community who gave explanations. They were therefore accustomed to relying on

authority and status to develop rationales. For example, early in the school year one child attempted

to resolve a dispute about an answer during small group work by initiating a discussion about who

had the best pencil, then about which of them was the smartest. This attempt to use status rather than

a mathematical rationale to resolve the disagreementis consistent with the way many children interpret

traditional mathematics instruction, as arbitrary procedures prescribed by their classroom authorities,

the textbook and the teacher (Cobb, Wood, Yackel, & McNeal, 1992; Voigt, 1992). In project

classrooms teachers capitalize on situations that arise naturally in the classroom to make children's

reasons an explicit topic of discussion. In general, such interventions are successful in establishing

the expectation that rationales should be mathematical.

Explanations As Descriptions of Actions on Experientially-Real Mathematical Objects

A more complex issue than establishing that mathematical reasons should form the basis for

explanations, is which types of mathematical reasons might be acceptable. Here reflexivity is a key

notion that guides our attempt to make sense of the classroom. We argue that what constitutes an

acceptable mathematical reason is interactively constituted by the students and the teacher in the course

of classroom activity. In the classroom studied the children contributed to establishing an inquiry

mathematics tradition by generating their own personally meaningful ways of solving problems

instead of following procedural instructions. Further, their explanations increasingly involved

describing actions on, what to them were, mathematical objects. In addition, children took seriously

their obligation to try to make sense of the explanations of others. As a consequence, explanations

that could be interpreted as relying on procedural instructions or used language that did not carry the

significance of actions on taken-as-shared mathematical objects that were experientially real for the

students were frequently challenged. These challenges in turn gave rise to situations for the teacher

and students to negotiate what was acceptable as a mathematical explanation. The following

illustrative episode, which occurred two months after the beginning of the school year, clarifies how

the sociomathematical norm of what is acceptable as a mathematical explanation, is interactively

constituted.
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Example: The episode begins as Travonda is explaining her solution to the following problem.

Roberto had 12 pennies. After his grandmother gave him some more, he had 25 pennies.

How many pennies did Roberto's grandmother give him?

At Travonda's direction, the teacher writes

12

on the overhead projector. Thus far, her explanation involves specifying the details of how to write

the problem using conventional vertical format. She continues.

Travonda: I said, one plus one is two, and 3 plus 2 is 5.

Teacher: All right, she said ...

Rick: I know what she was talking about.

Teacher: Three plus 2 is 5, and one plus one is two.

Travonda's explanation can be interpreted as procedural only in nature. She has not make

explicit reference to the value of the quantities the numerals signify nor clarified that the results should

be interpreted as twenty-five. Furthermore, in repeating her solution, the teacher modifies it to make

it conform even more closely to the standard algorithm by proceeding from right to left. Several

children simultaneously challenge the explanation.

Jameel: (Jumping from his seat and pointing to the screen.) Mr. K. That's 20. That's 20.

Rick: (Simultaneously) Un-uh. That's twenty-five.

Several students: That's twenty-five. That's twenty-five. He's talking about that.

Jameel: Ten. Ten. That's taking a 10 right here ... (walking up to the overhead screen and

pointing to the numbers as he talks). This 10 and 10 (pointing to the ones in the tens

column). That's 20 (pointing to the 2 in the tens column).

Teacher: Right.

Jameel: And this is 5 more and it's twenty-five.

Teacher: That's right. It's twenty-five.

Both Rick's challenge that the answer should be expressed as twenty-five, rather than as two

single digits, and Jameel's challenge that the is signify tens and the 2 signifies 20 contribute to

establishing the sociomathematical norm that explanations must describe actions on mathematical

objects. Further, by acknowledging the challenges and accepting Jameel's clarification the teacher

legitimized the ongoing negotiation of what is acceptable as an explanation in this classroom.

As a communicative act, explanation assumes a taken-as-shared stance (Rommetveit, 1985).

Consequently, what constitutes an acceptable explanation is constrained by what the speaker and the

listeners take-as-shared. But, as the above example shows, what is taken-as-shared, is itself,

established during class discussions. Further, our analyses of discussions across the school year

document that what is taken-as-shared mathematically evolves as the year progresses. Here, Jameel's

clarification assumes that the conceptual acts of decomposing twelve into ten and two and of

decomposing thirteen into ten and three are shared by other students. Individual interviews conducted
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with all of the children in the class shortly before this episode occurred indicate that for a number of

students this was not the case. Thus, while Jameel's explanation made it possible for him to orient

his own understanding to Travonda's reported activity, it may have been inadequate for others.

gxplanations as Objects of Reflection

When students begin to consider the adequacy of an explanation for others rather than simply

for themselves, the explanation itself becomes the explicit object of discourse. During classroom

discussions, it is typically the teacher's responsibility to makes implicit judgments about the extent to

which students take something as shared and to facilitate communication by explicating the need for

further explanation. As students' understanding of an acceptable explanation evolves, they too may

assume this role. To do so, they must go beyond making sense of an explanation for themselves to

making judgments about how other children might make sense of it. This involves a shift from

participating in explanation to making the explanation itself an object of reflection. This shift in

students' thinking is analogous to the shift between process and object that Sfard (1991) describes

for mathematical conceptions. In the same way that being able to see a mathematical entity as an

object as well as a process indicates a deeper understanding of the mathematical entity, taking an

explanation as an object of reflection indicates a deeper understanding of what constitutes explanation.

Analysis of the classroom data document that as the school year progressed a number of students

made this shift and focused on the explanation itself as an object. Children began to challenge each

other's explanations on the basis of clarity and potential to be understood by others in the class.

Intellectual Autonomy

The development of intellectual and social autonomy are major goals in the current educational

reform movement, more generally, and in the reform movement in mathematics education, in

particular. In this regard, the reform is in agreement with Piaget (1948/1973) that the main purpose

of education is autonomy. Prior analysis shows that one of the benefits of establishing the social

norms implicit in the inquiry approach to mathematics instruction is that they foster children's

development of social autonomy (Cobb, Wood, Yackel, Nicholls, Wheatley, Trigatti, & Perlwitz,

1991). However, it is the analysis of sociomathematical norms implicit in the inquiry mathematics

tradition that clarifies the process by which teachers foster the development of intellectual autonomy.

Students who are intellectually autonomous in mathematics are aware of and draw on their

own intellectual capabilities when making mathematical decisions and judgments (Kamii, 1985). The

link between the growth of intellectual autonomy and the development of an inquiry mathematics

tradition becomes apparent when we note that, in such a classroom, the teacher guides the

development of a community of validators and thus encourages the devolution of responsibility.

However, students can only take over some of the traditional teacher's responsibilities to the extent

that they have constructed personal ways of judging that enable them to know-in-action both when it

is appropriate to make a mathematical contribution and what constitutes an acceptable mathematical

contribution. But, as we have attempted to illustrate throughout this paper, these are the types of

judgments that the teacher and students negotiate when establishing sociomathematical norms that
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characterize an inquiry mathematics tradition. In the process, students construct specifically

mathematical beliefs and values that inform their judgments. For example, Jameel's challenge to the

teacher when he said, "one and one is two" rather than "ten and ten is twenty," illustrates that children

are capable of making judgments about what is appropriate mathematically. Further, Jameel's

challenge indicates that he had developed the belief that mathematical explanations should describe,

actions on experientially-real mathematical objects. Examples such as this show that it is precisely

because children can make personal judgments of this kind on the basis of their mathematical beliefs

and values, that they can participate as autonomous members of an inquiry mathematics community.

Significance

The notion of sociomathematical norms that we have advanced in this paper is important

because it sets forth a conceptual framework for talking about, describing, and analyzing the

mathematical aspects of teachers' and students' activity in the mathematics classroom.

Sociomathematical norms are intrinsic aspects of the classroom's mathematical microculture. We

have demonstrated that these norms are not predetermined criteria introduced into the classroom from

the outside. Instead, they are continually regenerated and modified by the students and the teacher

through their ongoing interactions. As we have shown, in the process of negotiating

sociomathematical norms, students in classrooms that follow an inquiry mathematics tradition actively

constructed personal beliefs and values that enabled them to be increasingly autonomous in

mathematics.

The notion of sociomathematical norms is also important for clarifying the teacher's role as a

representative of the mathematical community. The question of the teacher's role in classrooms that

attempt to develop a practice consistent with the current reform emphasis on problem solving and

inquiry is one of current debate. Many teachers assume that they are expected to assume a passive

role (P. Human, personal communication, August 1994). However, we question this position. As

we have stated previously,

The conclusion that teachers should not attempt to influence students' constructive efforts

seems indefensible, given our contention that mathematics can be viewed as a social practice

or a community project. From our perspective, the suggestion that students can be left to their

own devices to construct the mathematical ways of knowing compatible with those of wider

society is a contradiction in terms. (Cobb, Yackel, & Wood, 1992, pp. 27-28)

The analysis of sociomathematical norms indicates that the teacher plays a central role in establishing

the mathematical quality of the classroom environment and in establishing norms for mathematical

aspects of students' activity. In this way, the critical role of the teacher as a representative of the

mathematical community is underscored.
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A FRAMEWORK FOR ASSESSING TEACHER DEVELOPMENT[

Alice S. Alston, Robert B. Davis, Carolyn A. Maher, and Roberta Y. Schorr
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New Brunswick, New Jersey, USA

This paper describes a framework for analyzing children's mathematical behavior in three
contexts: ( I) a non-routine problem task working with a partner in a classroom setting; (2)
an open-ended task-based interview about how they built those solutions ; and (3) a series
of problems in a second task-based interview involving fractions. The framework was the
basis for an assessment of the impact of a long-term teacher development project in an
urban district according to (1) the processes by which the students build solutions: their
use of heuristics, models built, representations constructed; (2) language used to
communicate solutions; (3) students' ability to be metacognitive: generating descriptions,
explanations, and predictions for other mathematical problems, and reflecting on their own
problem-solving capabilities; and (4) the richness and depth of their solutions.

For the evaluation of an in-service teacher education intervention, it was necessary to go beyond

the usual test scores, and to create a framework that gave greater emphasis to those goals judged to

be most important. Two guiding principals were: 1) the focus of meaningful evaluation of teacher

development should be the student, since the ultimate goal is to improve student learning; and 2)

student performance must be examined according to a number of dimensions including cognitive,

metacognitive, and affective domains. A complete story would certainly include a thorough

discussion of the teacher development intervention itself, the design and implementation of the

assessment, and its results. Since that discussion far exceeds the constraints of this forum, this

paper will be limited to describing the framework of the assessment, with a brief discussion of the

context, and an analysis of a specific example of children's work as an illustration of one of the

dimensions that were chosen .

If one accepts the premise that the goal of instruction is not simply to get students to master rules

and procedures, but rather to encourage deeper and higher order understandings, documenting

mathematical "success" in students must be done in a way that goes beyond merely examining

standardized test scores (Maher, 1991). While standardized test scores have provided a relatively

cheap, fast and easy to use format for testing, they measure, to a large extent, recall and the

applications of facts, rules, and procedures. Romberg, Wilson, and Khaketia (1991) conducted

studies comparing the types of evaluation advocated in the 1989 National Council of Teachers of

'This work was supported in part by a grant from Johnson & Johnson and also grant MDR
9053597 from the National Science Foundation. The opinions expressed are not
necessarily those of the sponsoring agencies, and no endorsement should be inferred.
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Mathematics report Curriculum and Evaluation Standards for School Mathematics (1989) with

existing standardized tests. They concluded that traditional tests "are not appropriate instruments

for assessing the content, process, and levels of thinking called for in the Standards" (p.3).

According to Lesh, Lamon, Behr, and Lester (1992), assessment information should be taken

from a variety of contexts, including clinical interviews and classroom observations that focus on

the mathematical behaviors exhibited by the children during these activities.

What are some of these key mathematical behaviors?

Characteristics of deeper and higher-order student understanding, identified by Lesh and Lamon

(1992) as particularly important to document, include students' ability to: (1) go beyond the

problems given, generating descriptions, explanations, and predictions for other mathematical

problems, (2) investigate the structural properties of specific models or complete systems; (3) use

a variety of altemative representation systems that go beyond the execution of proCedural rules; (4)

construct, refine, plan, monitor, and assess their own thinking; (5) investigate similarities and

differences among various problem situations; and (6) form accurate and productive beliefs about

their own mathematical ability.

Lester (1982) asserts that, since the ability to use a variety of heuristics is useful in solving

mathematical problems, it is important to notice not only when students use heuristics, but also the

appropriateness of their use. Various heuristics used by students engaging in authentic problem-

solving situations that have been documented (Landis and Maher, 1989; Goldin, 1982) include

strategies such as thinking of a simpler problem, working backwards, looking for patterns, and

drawing diagrams.

Behaviors which reflect the mathematical representations children have built can also be an

important indicator of their depth of knowledge. Representations, according to Davis and Maher

(1990), "[i]n general... mean primarily mental representations..." (p.65), although, paper, pencil,

and physical materials such as manipulatives can be used by the student to demonstrate their

thinking. In order to assess the mathematical understanding of children, it is useful to analyze the

mental representations that they form while solving problems.

b what contexts should these behaviors be studied?

"...[M]athematics is increasingly coming to be seen as a social and collaborative act" (Schoenfeld,

1992, p.344). Schoenfeld further points out that mathematical collaboration and communication
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have a very important role in students developing a sense of "membership in a community of

mathematical practice" (p. 344). For students to develop powerful representations of mathematical

situations, adequate class time must be provided, and the use of small groups is advocated

(Noddings, 1990; Cobb, Wood, & Yackel, 1990; Maher & Alston, 1990; ). Vygotsky (1978)

suggested that children who work together in small groups, can begin to internalize the talk that

occurs within their groups, and challenge themselves and their group mates to provide reasons for

their thinking and work. They can begin to monitor their own mental work when they are forced

to justify, explain, or defend a solution or process. In addition, there is research to show that as

children perform a greater number of group problem-solving explorations, they develop greater

persistence, and become less dependent upon the teacher for affirmation and support (Fennema &

Leder, 1990). Group work can also provide opportunities for novice problem solvers to see

additional, and in some cases, more sophisticated problem-solving strategies used by their peers

(Lesh & Zawojewski, 1988).

Clinical interviews with individual students to determine the level of sophistication of their

knowledge can provide a valuable source of assessment information. Davis (1984) makes specific

reference to the task-based interview as a format in which the interviewer makes use of a specific

protocol with enough flexibility built into it to address and follow up on the student's responses.

By questioning a student in this manner, the interviewer can go beyond gaining information about

modes of thought, but also determine the degree of conviction and the method of validation of the

student's response (Ginsburg, Kosssan, Schwartz and Swanson, 1983).

How do we capture and document these behaviors?

Analysis of videotapes has proven to be a valuable tool, in a number of studies, for assessing how

students think about mathematical problems, and for recognizing student's representations (Alston,

Davis, Maher, and Martino, 1994; Kumagai, 1993; Davis, Maher, and Martino, 1992 ).

DESIGN OF THE ASSESSMENT

The assessment involved a comparison of students taught for three consecutive years by teachers

who had successfully completed the in-service project (Strand A) with students taught by teachers

who had not (Strand B). All activities were designed to determine the stability of the child's

understanding, his or her overall attitude about mathematics, and ability to:

a. demonstrate understanding of mathematical ideas using various representations;

b. make connections among ideas, problems and representations;
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c. recognize similarities and differences between different problems and representations;

d. connect formal concepts and procedures to other circumstances, especially those involving

real-life or everyday situations; and,

e. reflect metacognitively in a useful way about his or her own mathematical activity.

The problem-solving behaviors of both groups of children were carefully observed and videotaped

during three activities. The first activity involved small groups of two or three children working

together within a whole classroom setting to solve an open-ended mathematical problem. The

problem-solving task was non-routine, designed to allow students opportunity to apply various

strategies, develop their own notations and representations, and create a convincing argument to

defend their solutions. The same mathematics educator, unaware of the Strands which each

classroom represented, conducted sessions in the classroom of each of the twelve children.

Activities two and three of the assessment were task-based interviews in which two external

interviewers, unaware of the Strands to which each of the students had been assigned, interviewed

each of the twelve students. The first task-based interview was open-ended and based upon the

child's reflections on the classroom activity. This interview provided an opportunity for the child

to talk about the classroom problem-solving activity. The child was encouraged to discuss

alternative strategies; justify his own or another student's thinking and/or solutions; and make

connections and extensions to other problems. The second task-based interview was designed to

present the child with problems whose content is typically associated with the sixth grade

curriculum. The particular focus was on a number of ideas relating to fractions. This interview

was designed to examine the child's ability to connect formal concepts and procedures to other

circumstances, especially those involving real-life or everyday situations.

Twelve sixth grade students were chosen for the study, six belonging to Strand A and six matching

students from Strand B. Careful attention was paid to matching each pair of students (one from

Strand A and the other from Strand B) according to their ethnicity; the type (socioeconomic status,

community ethnicity, etc.) of school neighborhood where they lived; gender; and third grade

California Achievement Test scores in both reading and mathematics.

Each of the activities was video-taped with two cameras, one focusing on the child (or pair of

children in the classroom task) and the other on the work that the child was doing. The data for

analysis for each child included the videotapes of that child in each of the three activities and his or

her written work completed during each session.

0
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An instrument was developed and tested for use in the analysis, and analysts are now in the

process of analyzing the data for each of the twelve children. Two analysts, independently,

complete an analysis of the entire set of activities for each matched pair of children, document their

conclusions and develop a rated profile for each child, after which the two analysts compare their

analyses, discuss differences and either come to agreement or else document areasof

disagreement.

THE FRAMEWORK

In order to assess the children's mathematical behavior from cognitive,metacognitive, and

affective perspectives, the following list of dimensions were defined as a basis for analyzing the

data:

1. Ability of student to go beyond the execution of procedulal rules;
2. Richness and depth of solutions;
3. Content-specific aspects of each problem and/or activity;
4. Student's ability to be metacognitive in a useful way;
5. The nature of the representations that are constructed;
6. The student's ability to investigate the accuracy and goodness of fit of the descriptions

that are generated;
7. The student's ability to go beyond the problems given;
8. The effectiveness of the student's use of language and communication;
9. The student's ability to work cooperatively with others;
10. The student's expectation that mathematics Is a thoughtful endeavor and that solutions to

particular mathematical problems should make sense.

The instrument developed for the assessment was built around these dimensions toguide the

review and analysis of the videotaped and written data. It additionally was intended to provide a

basis for the establishment of inter-rater reliability.

Several sub-categories of questions in the instrument are associated with each dimension. The

analysts were instructed to respond to each question for each child, documenting the response

with actual episode(s) from the videotape transcript or excerpts from the written data. One sub-

category of questions in the instrument refers to the dimension "Ability of the Student toGo

Beyond The Execution of Procedural Rules".

To give concrete meaning to the analysis of this dimension, we reproduce the instructions for the

section from the instrument given to the analysts.

1. The child explains fractions mainly in terms of: (check as appropriate)
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Symbols without relation to meaning.

What the symbols mean.

The meaning of fractions with little or no use of symbols. (For instance, the

child can draw pictures, or use concrete materials, but is unable to use

symbols in a meaningful way.)

This section is intended to distinguish between a child mindlessly following rote rules and

procedures and one who is in search of meaning. The meaning can be made still clearer by looking

at two examples of student written work. The problem task given to the students was:

Jeannie is puzzled by the problem

6 +
2

Can you write something to help Jeannie understand?

The language "Can you write something ..." was carefully chosen to give students no indication of

what kind of explanation was being asked for, so that the student's response will give information

on what that student thinks is involved in "understanding". Shoshana interpreted this in terms of

written algorithms: Can you wage sanathong to hatp Jeannie aand?

(-5t, -'30J CL\CN
rtittCe

to (150 u, roue ko qnct to

Cec:cCOI DC 1-nCn
N-kneetfiLor numeraidoc.

psci cle.norniter akcomrte-C.

g- is
I X

Data from the transcript of the session confirmed that knowing the"rule" or algorithm was what

Shoshana meant by "understanding". When asked why the algorithm had the form that it did, she

could only answer that that was what the teacher had said; she found the notion of a mathematical

justification unfamiliar, foreign, and meaningless.

285
3 277



By contrast, Alec wrote

6 _1_ 7 /2

6

a 6, .1-

A A"/ -A 22
,

71
2 - j,t sc7 gglon

(1) (r) 61) (I)
, 3 4 5 L

showing that, for Alec, the mathematics was a meaningful response to a meaningful question.

(Indeed, Alec gave both a "real-world" meaning, in terms of "how many half pizzas can you get

from 6 whole pizzas", but also gave a mathematician's meaning as "the inverse of multiplication".)

This report has not described the teacher education intervention, nor the final results of the

evaluation (which are not yet available). It has dealt with the third part of this work: the

construction of a method for assessing the outcome. Preliminary results, however, indicate two

things:

The evaluation gave substantial differences in the performance of different students:

Based upon the preliminary analysis of the data derived from the instrument, Strand A

students (students taught by Project teachers) outperformed their Strand B counterparts

(students taught by non-Project teachers ) by a wide margin.
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Abstract

We contend that the preparation of specialist teachers in assessment has not received
due attention within the teaching profession. This paper outlines one attempt to remedy
this situation, currently underway at La Trobe University. The research reported here is
very much 'action research' and we begin by describing the requirements for good
student assessment using the Initial Clinical Assessment Procedure for Mathematics
(ICAPM). Details of the initial phase of development of a professional development
program for teacher-clinicians and the program's current state of development are
presented, together with implications for the future gained from experience with
developing such programs.

Introduction

In recent years there has been considerable attention focussed upon issues of assessment,
accountability, and standards (see for example Noss & Dowling, 1990; Ellerton & Clements,
1994). A critical issue in student assessment is the extent to which the use of an assessment tool

will directly assist in the advancement of students' mathematical education. We would argue that

this has two implications; first the availability of powerful assessment tools, and second, teachers

with expertise in the use of such tools.

We would also argue that clinical tools are the most powerful available, as Hunting (1993) noted

Clinical approaches to assessment beat other approaches hands down in this regard. The
reason is that the data source (the student) and the data analyser and interpreter (the
teacher-clinician) can engage directly in interactive communications. The teacher-
clinician `reads the play' as the `play' proceeds (p. 8).

However the mere existence of such tools is insufficient. Hence the need for highly skilled teachers

who can make effective use of these tools. In what follows we will discuss the features of a
professional development program which aims at creating skilled teacher-clinicians. The approach

outlined emphasises the primacy of teachers becoming expert at understanding, at a non-trivial

level, what general mathematics knowledge structures and competencies might be expected from

students of a particular age and background, but not treating this information as normative in

respect of any particular child; making interpretations and judgments concerning an individual

child's level of competence with respect to particular domains of mathematical knowledge; creating
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or adapting suitable mathematical learning environments to advance the student's progress in
specific directions (Steffe, 1990).

A model program for training teacher-clinicians

The model we use is consistent with paradigms for teacher development which emphasise 'action-
reflection' approaches (Jaworski, 1992; Labinowicz, 1985; Schon, 1987; ). It is also sensitive to
research on teacher change (Fullan & Stiegelbauer, 1991). We believe teachers are best trained
initially by using 'hands-on' methods under the supervision of other highly skilled personnel and
with the assistance of and support of other 'would-be' specialists. The 'hands-on' stage should not
entail working in a school setting to begin with, but would certainly involve practical work with
students. Consequently a small group of teachers would undertake clinical experiences associated
with appropriate theoretical reflection at a university site. As Huntinget al. (1991) have argued:

Teachers whose use of numerical concepts and procedures has become routine over the
passage of time need to understand the constructive processes of children as they
attempt solutions to mathematical problems. They need to observe first-hand the
behaviour of children under particular conditions and in particular contexts (p. 172).

The model requires a clinical setting a facility that provides opportunity for experienced
teachers (the would-be clinicians) to observe, unobtrusively, a highly skilled supervisor working
with a student. Video records of sessions would be a great advantage because critical utterances
and actions would be able to be replayed and discussed following an interview. Following the
'hands-on' stage would be further practical experience, this time an 'on-the-job' stage, where
teacher-clinicians would be set the task of building further on their experiences, ina school, more
intensively with students, and less intensively with expert supervision. The teacher-clinicians
would still meet regularly together to discuss cases, and the supervisor would make visits to the
school sites to assist the teacher-clinician 'on-the-job'. In fact, we would see this aspect of the
program creating a 'community of practice' (Lave & Wenger, 1991) among its participants. A
further outcome of the 'hands-on' stage and the subsequent 'on-the-job' experiences is that the
teacher-clinicians develop an improved, abstracted mathematics curriculum (Steffe, 1990). The
teacher-clinicians progressively builds up a more complex and functionally detailed general model
of students' mathematics knowledge.

A summary of the approach that guides such a program can be encapsulated in the words observe,
interpret, and act. We make a distinction between observation and interpretation, since individuals
may observe the same event or behaviour and 'see' different things. Interpretation of a sequence of
events is an outcome of an assimilation of sensory experiences into an individual's experiential
framework. The sense an individual makes of that sensory data is a construction of that individual
(von Glasersfeld, 1984). The object of the interpretation is the construction of a model of the
mental processes of the student that give rise to the observed behaviour. Our task is to assist
teacher-clinicians to attend to, that is notice, those behaviours that reveal clues about the student's
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mathematical constructions. Noticing is a combination of observation and interpretation. Without

an adequate theoretical foundation teacher-clinicians will not attend to those aspects of the sensory

data impinging on them that indicate critical qualities of a student's understanding of mathematics.

The need for the teacher to act appropriately seems obvious. We consider that there are three modes

of action. One mode is consequent upon interpretation. Having evaluated the situation carefully the

teacher-clinician moves to design a teaching strategy that takes advantage of the student's present

knowledge state. The second mode of action is a result of observation and unresolved effort to

interpret. In this case steps are taken to engage the student in further dialogue, possibly involving a

different problem, to clarify what the student understands. The third mode results from experience.

Experiences of working with children may cause the teacher-clinician to re-interpret behaviour.

The teacher-clinician's theoretical framework is fluid and developing. Often children's behaviour

will not fit existing expectations for that child, or any child, with which she has previously worked.

This is usually due to the teacher-clinician's theoretical framework not being adequate enough to

account for the possible behaviours that children might exhibit. The re-interpretation is made
possible through mental restructuring on the part of the teacher-clinician. As such, mental
restructuring is an action. It is a third mode of action and perhaps the most crucial action of all,

since teacher growth and effectiveness depends upon it.

It is of great advantage if the process of development of skills of observation, interpretation, and
action can be shared between colleagues. This is why we consider it necessary to encourage the

notion of a community of practice, in which apprentices and more expert professionals together

engage in the craft of clinical assessment and assistance.

In summary then, teacher-clinicians would work with students using interviews designed to allow

consideration of interpretations and recommendations for action. The goal of this 'hands-on' work

is to bring teacher-clinicians face-to-face with real examples of particular difficulties students have

in learning mathematics. Each teacher has to construct a model of the student's mathematical
understanding for herself; further, we would expect cases of particular difficulties to link with

broader classes of conceptual difficulties.

A pilot program for training teacher-clinicians

In 1991 a pilot program to train teacher-clinicians was established at La Trobe University and

undertaken by students as part of their Bachelor of Education course.

The program was designed to fuse the theory and practice of clinical approaches to assessment and

assistance in mathematics. Initially the teacher-clinicians spent a high proportion of class time

considering the tools and methods of clinical interviewing. This was done by discussing pertinent

literature, including protocols of interviews, viewing video. records of clinical interviews, and

observing experienced interviewers at work. The teacher-clinicians were introduced to the Initial
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Clinical Assessment Procedure for Mathematics Level B (ICAPM-B) which had been developed
specifically for use in clinical interviews (Doig, Hunting, & Gibson, 1993; Gibson, Doig, &
Hunting, 1993; Hunting & Doig, 1992; Hunting, Doig, & Gibson, 1993a; 1993b). Opportunities

were then provided for the teacher-clinicians to interview each other, and as a group, discuss
aspects of their performance as they replayed the interview video record.

Practical work with children was an integral component of the program. After negotiations with a
nearby school, a number of parents agreed to bring on campus their Year 6 children for an hour
after school each week for seven weeks. Thus the teacher-clinicians were able to work in pairs to
assess and teach an individual child. In addition to the children arranged by the course lecturers;the

teacher-clinicians were each required to work in their own time with a child whom they were
responsible for identifying. Work with the second child was conducted off-campus at a time
mutually convenient to both parties. A minimum of five meetings were to be held with each child.

Teacher-clinicians were required to prepare a case report for each child which detailed background

inforthation about the child, pertinent questions and tasks given, together with responses elicited
and interpretations of behaviour. A set of recommendations outlining possible further action was
also to be provided.

The sessions were structured into a briefing time, an assessment-teaching time, and a debriefing
period. The debriefing period was very important as it was here that the teacher-clinicians and
'lecturers discussed aspects of recent episodes with children. Sometimes the stimulus was a replayed
video segment, or a problem that presented itself to one of the teacher-clinicians. At other times the

focus was on a teaching technique pertinent to one of the children, outu resources and materials

that might be used profitably. Since the 1991 program, an action research methodology (act-reflect-

modify-act cycle) has developed the initial program to the current version, last conducted in 1994.

A developed program for training teacher-clinicians

Three years of modifying the program due to suggestions from participants as well as reflections on
experience by the authors, has led to many changes to the original concept. A major feature of the

1994 program in Clinical Mathematics Method was that the program was divided into three two-
day workshops, spread over a semester. A surviving aspect from the pilot program was that the
teacher-clinicians were taken from a strictly supervised interview situation through to operating
independently.

The emphasis of the first two-day workshop was on theory and background. This included
discussion of the reasons why children fail at mathematics, including major hurdles that students

overcome in the course of their mathematical education, and identification of discontinuities

between informal and formal mathematics knowledge and their causes. This was followed by an
overview of the teaching-learning process, including transmission versus constructivist approaches
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to learning and teaching, the central role of communication, social interaction, and language, the

role of reflection in the development of abstract thinking, and the subjectivity of linguistic
meaning, with reference to the work of Cobb, Yackel, & Wood (1992), Steffe (1991), and von
Glasersfeld (1990, 1991). Discussion of characteristics of the skilled teacher-clinician centred on an

explication of the observe-interpret-act rationale explained above. The major focus of the second

day was on the theory and practice of clinical interviews, beginning with a brief history of the

technique as a research tool, followed by discussion of its features. Prior to discussion of specific

techniques of conducting and recording clinical interviews, the teacher-clinicians observed an

interview take place in real time through a one-way mirror. One of the program presenters
conducted the interview with a volunteer student. A video record of that interview was available for

reference in the subsequent discussion. Observation of the 'live' interview facilitated the discussion

on interview techniques because it provided a reference point for many of the techniques discussed.

After this the history and use of the Initial Clinical Assessment Procedure for Mathematics Level

B (ICAPM-B) was reviewed. The workshop concluded with a case study of a student, in which the

teacher-clinicians watched a video record of an interview, discussed the case, considered a written

report that had been prepared for parents of the student, and discussed appropriate strategies for

follow-up teaching based on the assessment records and report.

The second two-day workshop, several weeks later, focused on work with individual students, and

had as preparation an exercise with the aim of the teacher-clinician critically examining their
personal interview skills. The exercise was for each teacher-clinician to video record an interview

conducted by herself with a student, and using the principles and techniques of the clinical
interview method as a reference, analyse and critique their personal style. A further interview with

a different student, using the same set of ICAPM-B tasks was then conducted, for gauging how

their interview technique improved, needed modifications, or even proved resistant to change.

Another feature of this workshop was the provision of students with whom the teacher-clinicians

could practice their interviewing skills. Materials needed for administering the ICAPM-B tasks

were made available by the program presenters, and each interview was video recorded for later

reference.

On the first day the focus was on assessment and on the second day teaching. The teacher-
clinicians worked in pairs for assessment. One took responsibility for interviewing using the
ICAPM-B task set; the other acted as an observer and record-keeper. After this the teachers
swapped roles, and a different student was interviewed. Some teachers preferred to replay their

own interviews to assist in planning instruction for the following day, when each teacher-clinician

had responsibility for implementing two teaching sessions with one of the students they had
assessed the previous day. Time was allocated to reflection and review of the assessment data at the

end of day one. A plenary session was held after the teaching session had concluded. In this session
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teacher-clinicians shared their recent experiences and specific issues and problems were

contributed and discussed.

The focus of the third two-day workshop was on the construction of a written, diagnostic report

based on an initial assessment, as well as consolidation of clinical interviewing skills. The practical

value of this exercise was to deal with the eventuality that the clinician in a school situation might

not always be able to follow up each student they interviewed with an intensive program of

instruction. Hence the importance of preparing a clear and useful communication that could be

understood and acted upon by another teacher. To this end students were again available and the

teacher-clinicians worked alone conducting an initial assessment with a student. Teacher-clinicians

prepared a written report based on their interview observations and records. The reports were than

exchanged, so that each teacher-clinician received a report prepared by a peer. Based on the

information provided in the report, the teacher then prepared and implemented an instructional,

session with the appropriate student.

What we have learned so far

Cases referred to mathematics clinics are often accompanied by little specific information.
.Expertise in assessing the mathematics knowledge of individuals demands the intelligent use of

qualitative procedures and skilled interpretation. As Steffe (1984) says:

The only way that I know to understand the mathematical reality of children is to
interpret the language and actions that can be observed as they engage in activity that
could be called mathematical and, on the basis of those interpretations, make decisions
about what new knowledge the children might construct, how they might construct it,
and what aspects of 'old' knowledge need to be refined and consolidated (p. 7).

As we have already said, provision of diagnostic tools for mathematics teachers to use, and the

training of teachers with advanced clinical skills go hand in hand, because it is the way in which a

tool is applied that will determine its effectiveness. Clinical approaches to assessment have an
important advantage over other methods because the data source and the data interpreter can

engage directly in interactive communications.

Teachers who have undertaken the program as it has evolved over the past several years have
worked with student clients under considerable pressure. They have been placed in situations in

which it is often not possible nor appropriate to engage well-rehearsed strategies or adopt tried and

true methods. As a consequence it has been common to observe them fall back on ingrained

methods such as telling students, or providing direct information rather than questioning, posing

easier tasks, or helping them realise the consequences of their mathematical beliefs. In addition,

they lack confidence in their ability to interpret situations. They need as many opportunities as

possible to develop deeper understandings of the theory and research, and also curriculum wisdom.

3 285 293



Our dilemma is that development of research-grounded understandings for interpreting students'
responses to questions and tasks is a life-time professional activity.

We are conscious of the need to provide more one-to-one contact between supervising staff and
teacher-clinician. This is difficult, because when the teacher-clinicians are working with students.
they need to feel free to attempt strategies and take risks without having someone always looking
over their shoulder. More time may need to be spent outside the teaching sessions to review and to
plan in consultation with the program leaders. The program needs to be extended so that additional
support can be provided to teacher-clinicians in their classrooms and schools as they seek to adapt
their skills in their particular contexts.

Teacher-clinicians are seriously hampered by lack of a good mathematical background what we
mean is not that they are unable to do mathematics, but that they do not have a" good grasp of the
fundamental'concepts of elementary arithmetic. It would be advantageous to provide an overview
of the key mathematical ideas, as well as the significance of those ideas, that students need to learn
in primary schooling and in the early years of secondary education. It would be even more
advantageous for teachers undertaking the program to have recently reviewed fundamental
principles of the learning of elementary mathematics, where if substantive research is not available,
then at least there is some consideration of available curriculum wisdom. An important reason for
reviewing fundamental principles of mathematics pedagogy is that over time different pedagogical
approaches are stressed and new insights into learning are made. Some review of critical problems
faced by students learning elementary mathematics would be beneficial. Thus a common set of
understandings about how students learn mathematics needs to be established in 'order to begin the
work of training successful clinicians.

In summary, our experience has raised three major issues. First, that teachers require greater
knowledge of mathematics per se, and mathematics pedagogy beyond that of their initial training.
Second, with structured guidance and 'hands-on' experiences, teachers can gain in confidence and
technique to become more effective observers, interpreters, and actors in the drama of advancing
children's mathematical development. Third, the act-reflect-modify cycle, whilst effective in
developing a professional development program, has no end!
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THE TENSION BETWEEN CURRICULUM GOALS AND

YOUNG CHILDREN'S CONSTRUCTION OF NUMBER:

ONE TEACHER'S EXPERIENCE IN THE

CALCULATORS IN PRIMARY MATHEMATICS PROJECT

Susie Groves*

Deakin University - Burwood Campus

The contradiction posed by traditional curriculum statements and a constructivist
view of learning is problematic for classroom teachers. As part of a long-term
study into the effects of the introduction of calculators on the learning and teaching
of primary mathematics, this paper uses data from four interviews, over a three
year period, to report on how the classroom availability of calculators resulted in
one infant teacher being confronted by children's sometimes unexpected and
surprising knowledge, the tensions created between her previously determined
curriculum goals and the children's construction of number, and her
reconceptualisation of her own classroom practice.

Introduction
Constructivist theories of learning have gained widespread acceptance amongst mathematics

educators. However, whilst it is relatively easy to accept a trivial constructivist position that
knowledge is actively constructed by the learner, rather than passively received, von Glasersfeld
(1990a, p. 27) argues that adoption of radical constructivism requires formidable changes in thinking
and attitudes. In particular, the task of education "can no longer be seen as a task of conveying ready-
made pieces of knowledge to students, nor, in mathematics education, of opening their eyes to an
absolute mathematical reality" (von Glasersfeld, 1990b, p. 33). The contradiction posed by traditional
curriculum statements, which often appear to be based on the assumption that the goal of
mathematics teaching is to transmit prescribed knowledge, and a constructivist view of learning is
problematic for classroom teachers (Cobb, 1988; Hart, 1992; Boufi, 1994).

This paper reports on how one infant teacher was confronted by children's unexpected and
sometimes surprising explorations of number in the Calculators in Primary Mathematics project and
the resulting tensions betwien her previously determined curriculum goals and the children's
construction of number.

The Calculators in Primary Mathematics project was based on the premise that calculators, as
well as acting as computational tools, have the potential to radically transform mathematics learning
and teaching by providing a mathematically rich environment for children to explore.

This research was funded by the Australian Research Council, Deakin University and the University of
Melbourne. The Calculators in Primary Mathematics project team consisted of Susie Groves, Jill Cheeseman,
Terry Beeby, Graham Ferres (Deakin University); Ron Welsh, Kaye Stacey (Melbourne University); and PaulCarlin (Catholic Education Office).
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In 1990, all children at kindergarten and grade 1 levels in six schools were given their own
calculator to use freely in class. The project followed these children through to grade 4 level in 1993,

with new children joining the project each year as they started school. In total, about 80 teachers and

1000 children participated in the project. Teachers were not provided with classroom activitiesor a
program to follow, instead they were regarded as part of the research team investigating the ways in

which calculators could be used in their mathematics classes. Feedback and support was provided
through regular classroom visits by members of the project team and through teachers sharing their

activities and reflecting on their practice at regular half-day meetings and in the project newsletter.

Findings relating to positive long-term learning outcomes for project children based on a
large scale program of testing and interviews and changes in teachers' expectations based on an
extensive written questionnaire have been reported elsewhere (Groves & Cheeseman, 1992,
1993b; Groves, 1993a, 1994a, 1994b; Groves & Stacey, 1994; Stacey, 1994).

Teacher change was a focus for research in two of the project schools. The project was based
on models of teacher professional growth which attribute changes in knowledge and beliefs to

teachers' reflections on changes in their own classroom practice (Guskey, 1986; Clarke & Peter,

1993). An underlying hypothesis of the project was that the introduction of the calculator would

greatly enhance children's development of number concepts and thus confront teachers with the need

to re-examine their beliefs and practice. Interviews with seven teachers over a three year period
showed that all reported substantial changes in their teaching practice, with all seven believing that
their teaching had become more "open-ended" (Groves, 1993b).

This paper attempts to explore the role of the calculator in effecting change by investigating the

tensions created for one of these seven teachers, referred to here as Barbara.

Background and methodology
At the time the project commenced, children in Victoria (Australia) commenced school at

kindergarten (called preparatory or prep grade) aged between 4 1/2 and 5 1/2 years. While there was
no centralised curriculum, most schools based their mathematics curriculum statements on state

guidelines. Unlike many schools, which developed their curriculum statements in local clusters, the

school at which Barbara teaches had just completed a thorough review of its own mathematics

curriculum, making substantial changes. For example, it had been decided that the symbols for the

four operations would no longer be introduced in kindergarten. Barbara had played a key role in the

development of the new mathematics curriculum.

The school, which is located in a middle-class suburb of a large city, has an excellent academic

reputation in the local community, where it is sometimes referred to as "the private [i.e. fee-paying]

school you send your children to when you don't send them to a private school". This reputation is

based on the high quality of its teachers including Barbara, who is recognised by the Principal as

being a particular drawcard for parents of kindergarten children and the emphasis placed on
curriculum development. The author had known Barbara for about 8 years prior to the
commencement of the project and had worked with her, previously. One of the reasons for inviting
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the school to participate in the project was the fact that both Barbara and the other infant teacher,

referred to here as Sharon, were held in such high regard and were so enthusiastic about participating.

The project commenced in April 1990 the beginning of term 2 of the school year. All
teachers in the project were interviewed at the beginning of their involvement in the project (which in

1990 only took place in June, but in later years early in term 1) and at the end of each year of their

involvement. Each of the 30 40 minute semi-structured interviews included questions related to a

range of issues such as: background information; initial reactions to the project; teachers' expectations

of the project; effects of calculators on the children; effects of calculators on mathematics teaching;

the support program; and effects of the project on the school. Interviews were tape-recorded and

transcribed. For the purpose of data analysis, a set of categories, under headings indicated by the

original research questions, were developed using an iterative process. Responses were analysed in

terms of these categories. All responses which related to a particular category were recorded, whether

or not they were given in response to the question designed to address that issue.

There are many features in common between Barbara's responses and those of the six other

teachers whose interviews have been analysed in detail. However, it is in Barbara's interviews that the

tensions between existing curriculum goals and teachers' growing awareness of children's conceptual

development are best articulated half of the 66 responses relevant to this analysis referred to
curriculum issues. There is no attempt made here to cover all aspects of the four interviews rather

the discussion focuses on the main themes which have emerged from the data analysis. While this

paper is based on the interview data, it should be noted that the conclusions drawn are also supported

by over 50 classroom observations and video tape of a lesson (see Groves & Cheeseman, 1993a, for

excerpts).

Barbara, who had been teaching for approximately 20 years when the project commenced, had

recently participated in a professional development program in mathematics and was always eager to

change. In line with most practising teachers, she described her teaching in terms of practice rather

than theory, listing the use of materials and allowing children to "discover things for themselves and

then discuss it afterwards" as the main features of her teaching (Interview 1). Although the project's

theoretical framework was consistent with a constructivist view of learning, the project did not

present teachers with any particular theoretical framework, but instead attempted to encourage

teachers to reflect on their (necessarily altered) practice.

Barbara had never used calculators in the classroom, had no pre-conceived ideas about what

might happen, and said that what most interested her about joining the program was "free calculators

... and also being able to talk to other people about it, and the chance to try something that I hadn't

tried before" (Interview 1). She was teaching a combined kindergarten/grade 1 class in 1990, and

kindergarten only classes in 1991 and 1992.

The role of the calculator
The project team had hypothesised that curriculum goals would be challenged by the presence

of the calculator, as children would encounter large numbers, negative numbers and decimals at an
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earlier age. However, an unexpected outcome was the extent to which Barbara (and most other
project teachers) made frequent reference to the role of the calculator in providing opportunities for
sharing and discussion about number for example:

It certainly encouraged me to talk to the children much more in maths, and discuss how
did they do this, why did they do that, and get them to justify what they're doing, which I
guess, previously, I hadn't done in maths much more discussion and sharing.
(Interview 1)

Part of this sharing and discussion was a result of a need created by the altered nature of the
classroom environment, where children engaged more in exploratory activities, which then required
explanations:

I think the more open-ended things, where they can go and choose a different way to do
something more exploratory activities I think the calculator has been fascinating in
that sort of use. Especially getting children to discuss what we've done I think it's been
a great tool to have there and say "What did you press there?" or "Why did you do that?"
or "What did you find out?" or "How did you do that? Let's share your ideas".
(Interview 4)

The fact that the children were engaged in, often lengthy, independent explorations also enabled
teachers to spend more time sitting with individual children, observing and interacting with them.
Barbara (and many other teachers) spoke of the calculator "revealing" children's knowledge:

You find out what they know you may not have found out previously with the
calculator I mean unless you actually sat and questioned them. (Interview 2)

Children were not only exceeding teacher expectations, but were now being allowed to bring
into the classroom their mathematical knowledge from outside:

I really didn't know what I had in mind that the children would do, but I think what has
actually happened is that the children have gone ahead much further than I thought they
would have.... There won't be an artificial ceiling put on what they're doing ... the
brighter children ... they're showing me what they can do rather than me teaching them. I
might have not known what they could have done before, because when they're
discussing what they've done and how they've worked it out, they're bringing into the
classroom what they know from outside of school. (Interview 1)

Nevertheless, Barbara was concerned at the start about those children she described as
"weaker" and whether or not, in the long term, they were going to get a lot more from using
calculators than they would have otherwise. She also found at the end of the first year that "there are
about two or three very timid preps ... who are a little bit anxious from time to time they do not
necessarily feel very relaxed about it" (Interview 2).

Children's construction of concepts related to number
From the outset, the children's interaction with a calculator rich environment challenged

Barbara's preconceived curriculum goals for example:

I've never taught formally addition before I haven't actually taught it formally this year,
but the children are writing it down formally with preps. I've done it in grade one, and
we've done it orally with preps before, but I haven't encouraged them to write it down,
and this time it's just happening. I've said to them "Write down what you've done" and
they're just writing down equations about it and I'm encouraging them to draw it and
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write it at the same time as using their calculator, so that I can see that they understand it.
So that's why that aspect has changed .... So we're coming to the symbol first, and then
we're working out what that means. Mostly because of the availability of the calculator,
they just go to it straight away, and they bring in their knowledge from at home, and then
they discuss it with each other, so everybody's using the sign. (Interview 1)

Children's (often quite sophisticated) construction of number concepts did not necessarily fit

well with attempts to "transmit" knowledge (albeit on this occasion it was a parental attempt):

Tim was interesting because it was 20 take away 2, and he got into all sorts of strife
because he was taught at home the business about re-grouping and he didn't quite know
what to do because the two was smaller than the zero, so he ended up taking zero from
two. Now he's a really smart clever kid and then he got the wrong answer. He said "I
don't know how to do it. I know the answer is 18, but I don't know how to do it".... He
knew it was wrong and he wrote down all these wrong answers then he said "I'm really
mixed up because I know the answer is 18 but I can't get it, I can't work it out." This was
very interesting. We did say to him "What is it?", but nobody is really quizzing him to
know what was in his head .... You see the fact that it was vertically set out he couldn't
work out why he couldn't dcAit that way. Yet he knew the answer. (Interview 2)

Some kindergarten children's number concepts were quite remarkable:

I guess in reading numbers a lot of them are really concerned with "How many zeros are
there in a million?" and they are having a go .... This is just the top lot. The other ones are
hearing it, and that is what I think is important about the sharing time, they're hearing
somebody say how many zeros are important, however many it is. I don't think it has
sunk in to many of them, which is fair enough. I think a lot of them are really talking
about how you can read those larger numbers. (Interview 4)

By the end of the third year, Barbara had not only accepted the fact that there was a real spread in her

class, but was also thinking less in terms of curriculum content being either "covered" or "not yet

covered" and much more in terms of mathematical understanding being an "on-going, growing,

process by which one responds to the problem of re-organising one's knowledge structures" (Kieren

& Pirie, 1994).

Tensions
About 10 weeks into the project, Barbara was already seriously challenged by the conflict

between the exploratory nature of working with the calculator and her perceived need to "cover the

curriculum":

I guess we've done a lot more exploratory work too, which I hadn't really done in. the
past, and I'm finding it just a bit difficult to balance the two. Whether to keep going on the
exploratory work, or to come back and do things that are very separate from all of that
like with the preps, making two groups of six and six groups of five and all that sort of
thing, which I've always done in the past and there are always some children who find

that very difficult I'm not too sure now whether to continue with the more exploratory
work, or to continue with that and play safe by going over the other things about the
grouping activities that I'd normally do. I'm a bit torn between the two .... I guess I'm
sort of walking the line between two ways of teaching maths. I did start to change after
I'd done the [professional development] course, and now, again, using the calculators, I'm
starting to change a little bit more .... But I'd just like to have someone else say it's okay

to do that maybe eventually you'll find you don't need to do the more formal things.
They're all things that I've considered, but I'm not prepared yet to throw out the more
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formal things and go one way. I would like a little bit more talking about that aspectof
things in the support group. (Interview 1)

At the end of the first year, although she was happy with what the children had achieved.
Barbara was still concerned about the "gaps" in the curriculum:

I also worry that we cover all those other structured things that we always go through
have we covered all the basic things? Actually Sharon and I are the ones who have gone
back to a lot of things we might have slipped on. Maybe it's that time of the year. You are
thinking it's getting towards the end of the year are there any gaps? (Interview 2)
From the outset, curriculum goals were also being challenged by the notion that the children

were covering topics from higher grade levels for example:

I am not sticking to what has been the guideline for us in the past. As we started off I
tried to stick to what was going on and then go out from there. Then I went further out
and now I am almost coming back a bit because there seems to be some controversy
between other grade levels. But we haven't been sticking to exactly what's been put down
for us to do, we've been going further than that. (Interview 4)

The project team had anticipated that the presence of calculators would have implications for
children's representations and recording. However, children's use of calculators also resulted in them
making constructions which were in conflict with those of the teacher for example:

I guess that's something that's been a bit different this year really, we haven't talked so
much about "this equals this" and what that means ... other years we spend a lot of time
on that....We were so much tuned in previously to make sure that they really understood
what equality was: that 7 + 3 = 10 that 7 and 3 is the same amount as 10. If they are
pressing that equals button it's not the same. It doesn't mean the same thing any more, I
guess. I don't really know what the children know themselves. We say "is" when we are
pressing.it, although the children will still use "equals". I guess it is something we have
not really addressed a lot. We were horrified to see them writing down 7 + 3 = = =
[when using the constant function to count by 3's] and all that sort of thing. When we
first saw it we thought "What's going on? Can we have that?" We. were worried about it,
but we didn't stop them doing it. (Interview 2)

At the end of the third year, she had still found no resolution to this problem:

I think one of the things that has come up as an area of difficulty has been the use of the
equals sign. I find I haven't spent as much time as I would have previously before
calculators talking about what equality means. I don't know whether it is important or
not, but I think it is certainly important somewhere along the line. I usually do it a lot in
prep and I don't do it much at all now. I somehow can't come to terms with how I talk
about that in the equation form and how I talk about it when they are using the constant
function. I've tended to back out of it, which I don't necessarily think is a good thing.
(Interview 4)

Reconceptualising classroom practice

Based on the work of Clay (1979) and others, many Victorian teachers have made significant

changes over the past 15 years in the way they view the learning and teaching of language. Barbara

(in common with many other project teachers) expressed the desire to make and subsequently
claimed to have made her mathematics teaching more like her language teaching:

I've had to really encourage them to share what they've done. I thinkrve always don; that
in language, but I haven't really done that very much at all in maths before. What I see in
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the use of calculators and how its changed my maths teaching is that I think I'm teaching
maths now more in a way that I've been teaching language for a while. I've always taught
maths much more formally still with use of materials, and still with problem solving,
but not as exploratory as what I'm doing now with calculators. (Interview 1)

By the end of the second year, a significant change appears to have occurred in Barbara's

beliefs about mathematics she no longer thinks in terms of teaching children the "one right way":

I think that happened last year and it's continued this year. I think that's something that
really started with the use of the calculator the idea of "What did you find out?" and
"How did you do it?" and that there isn't one right way. I'm not teaching them that "This
is the way you do it" but "How did you work it out?" .... Maths is very much more in
line with the way I teach language I think now .... We always do a lot of sharing in
language. Now we do in maths, which previously was "This is the way we do it"
everybody will do it and it's either right or it's wrong, and that's it. But now I think, I
much prefer to work that way too [in maths]. It feels much more natural and much more
the way that I like to teach. (Interview 3)

For Barbara, the emphasis has changed from teacher direction to a more child centred
approach, which takes into much greater account children's constructions of the number concepts:

I don't think I've been as concerned as to what the children know apart from what I
want them to know before. I think it has opened things up a little bit more and I'm more
interested in them telling me what they know ... having the calculator in the classroom
has helped that just finding out from children what they know, rather than me
teaching.... There will still be times when I do direct things, but the emphasis is much
more on them finding out and exploring and then sharing. (Interview 4)

Overall, although she elsewhere refers to other possible causes for change, Barbara believes

that the presence of the calculator has helped her achieve the type of change in her mathematics

teaching which she had been seeking:

I've done a lot of changing in language and I haven't changed much in maths for ages
really ... I think [the calculator] gave me something I was happier with and it encouraged
me to share, to build on what the children were finding out which is what I've done in
language and it made the two areas work a little bit more in a similar style, which I
hadn't been able to do before. I think that helped. (Interview 4)

Conclusion

A constructivist view of learning applies to teachers as well as children. In order to move from

a transmission view of communication, teachers need to undergo a conceptual revolution of their

own, based on reflection on and abstraction from their own experiences of mathematics learning and

teaching (Cobb, 1988; Steffe, 1990).
Steffe speaks of the impressive generative power of children working in environments

conducive to constructive activity and states that teachers "have an exciting choice between being

participants in specifying the generative power of students or taking what their students can learn as

being already specified by an a priori curriculum" (1990, p. 395).

The Calculators in Primary Mathematics project promoted a classroom environment

conducive to such constructive activity by children, which in turn could provoke teachers to reflect on

their practice within a social environment provided by the support structures of the project.
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This paper has shown how the presence of the calculator has assisted one teacher in gaining
insights into children's knowledge, challenged her previously held views on the nature of
mathematics learning and teaching, and resulted in a reconceptualisation of her classroom practice.
Although Barbara is unique in the emphasis she placed on curriculum issues, many other project
teachers also welcomed the opportunity for reflection on their own experiences, constructing their
own interpretations of the project and correspondingly changing their beliefs and practice.
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Abstract:We report a case study investigating a teacher's classroom activities within a school-based research

project encouraging an inovinory pedagogy with the use of computer technology. The teacher had had six years in

which to form her personal pedagogy-in- practice within this setting. Based on transcripts and video recordings of

three hours' classroom activity. a semi-structured inteview and the pupils' written presentations of their work. we

analyse her intervention strategies and beliefs regarding her pedagogical role. mathematics learning and the role of

computer technology as constructed in the classroom. The results show a dear tendency to embed interventions into

pupils activity with reference to procedural, social and content-related issues and a number of comments aiming to

encourage reflection smaller but comparable to directive ones. Episode analysis. however illustrates how the school

Context restricts and Shapes beliefs and intervention srategy.

Theoretical framework

From the days when mathematics education research focused mainly on students and their

relationship to mathematical concepts as a two-way interaction, there has been important

development in the recognition of the teacher's role in the classroom. Initial interest was on the

teacher's actions and their bearing on Student performance. This was followed by a shift towards

aspects underlying these actions, i.e. teacher attitudes, beliefs, intentions and social

constructions of their own and the students' roles as integral elements of classroom ;earning. In

subsequent research there was a further discriminating tendency in two respects: that of

disaggregating attitudes and beliefs (to mathematics, to mathematics learning, to the role of the

student) and that of distinguishing beliefs studied outside classroom situations to those embedded

in classroom practice (Ernest, 1989), recently termed "situated beliefs" (Hoy les, 1992).

Here we describe on-going research into the a) beliefs -in- practice and b) strategies to intervene

in pupils' learning processes, developed by nine teachers in a classroom environment in Greece,

which was designed to facilitate and encourage inovation in pedagogical practice. In particular,

we take the case of one of the teachers to discuss the issues emerging from the analysis. The

study involved a detailed observation of the teachers' activity during the seventh year of a

longitudinal project in a Greek primary school (Kynigos, 1992) where the main aim of the

researchers-as-educators was for the teachers to use Logo as a tool with which to setup and

develop an alternative pedagogical paradigm with respect to that of the wider educational

setting (Kontogiannopoulou - Polydorides and Kynigos, 1993). Our theoretical orientation

concerning learning mathematics, teacher education and curriculum innovation is tightly related

to the Vygotskian perspective of social construction of knowledge (Vygotsky, 1978) rather than

the Piagetian view of learning as a developing re-organisation of knowledge structures in a

continual quest for equilibrium in the environment, which was not explicit about the role of the

social aspect of that environment. We therefore see knowledge as constructed through social

interaction which, in this case, includes using the computer rather than through interaction with
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the environment and the computer medium alone. Consequently, we perceive didactical

inovation as a process whereby teachers construct meanings within the society of the classroom

(Confrey, 1986) and reflect on and reorganise their practice (Olson, 1989) rather than meet

objective targets expressed or mediated in a way which is disembedded from the classroom

practice of the repspective teacher (Brophy, 1986). Despite our appreciation of the French

researchers' focus on the reproducibility of didactical situations rich in opportunity for the pupil

to construct meanings (Arsac et al., 1991) we try to allow for the complexity of the classroom

situation and keep an open mind regarding the observation of the unexpected.

In the present school project, the computer was used to design classroom environments

encouraging inovation (Hoy les and Sutherland, 1989, Noss, 1985), i.e. cooperative small group

projects, emphasis on pupils' autonomy from the teacher in decision making, cooperation,

active thinking and construction of meaning. During teacher education seminars, there were

discussions regarding principles and issues related to learning with Logo as a result of classroom

practice, but the researchers did not participate in the classroom and the seminars were not

intensive and oriented towards "delivering" a prespecified teaching algorithm. The computer

was thus used to facilitate the social construction of knowledge (Cobb et al., 1992, Floyles,

Healy and Pozzi, 1992) amongst pupils and with respect to the teachers. Previous research has

shown how used in this way, the computer may provide a window to pupils' thinking processes

for teachers and researchers alike (Weir, 1986, Noss and Hoy les, 1992, Hoy les and Noss, 1992b).

Regarding the present research it was thus used as a window to the teachers' intervention

strategies and their beliefs in practice (Hoy les, 1992).

Background to the Study

Prevailing educational practice in Greece, as well as the social and educational context of the

particular study, inevitably influence and shape the teachers' beliefs and conceptualisations

about education in general and their own role in particular. The Greek educational paradigm is

characterised by an emphasis on content, abstract knowledge, teacher-centred approaches and a

lack of systematic pragmatic orientation
(Kontogiannopoulou - Polydorides and Kynigos, 1993,

McLean, 1990). The domain of each subject matter is strictly defined and presented in the (until

recently) unique curriculum textbook. The teacher's role is seen as that of transmitter of the

information presented in the book, and the students' role as the receivers of this information,

who must memorise it and be able to re-produce it on demand. Learning is thus seen as an

individual, ranter than a cooperative or group experience. Not surprisingly, perceptions of

computer use and relates policies have been technocentric and with little relation to educational

priorities and development ("Astrolavos" report, 1992, Kontogiannopoulou Polydorides and

Kynigos, 1993, Plomp and Pelgrum, 1992).

The school project in question, which began in September 1986 and has been based on

classroom activity from the outset, involves teacher education and a "Logo curriculum"
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development. From year 3 to 6 inclusive (i.e., children aged 8 to 12), all 24 teachers of the
school are taking part, each one responsible for the participation of all the children in his/her
class (500 children in total). The main component around which the program is organised has
been called an "investigation". Throughout the four year period, the children engage in
informal collaborative investigational work for one teaching period a week and compose a
written presentation (including the problems they encountered, ways in which they solved them
and how they worked together in their group) on each of their "investigations", which typically
lasts for 5 to 6 weeks. Finally, one teaching period is given to the oral presentation of the
projects by each group of children, followed by discussion.

Regarding the teachers' role, the explicit focus of the "investigation" hour, as mediated during
the teacher education seminars, was to use the technology to set up an unconventional
classroom practise; the teachers were left to develop strategies for a pedagogy encouraging
collaborative investigations. The explcit pedagogical objectives of the "investigation" hour
were: a) cooperation, b) active thinking and c) initiative (the third objective was later
reformulated to "autonomy from the teacher"). During the first three years of the project the
focus on content was restricted to Logo, followed by systematic suggestions (but nothing more)
from the researcher-educator to gradually make more explicit references to school mathematics
content which happened to be used during the investigation and to the pupils' written
expression. Details of the project's outline, educational objectives, working structure, classroom
setup and "taught" content can be found in Kynigos, 1992. Studies involving children's use of
programming ideas can be found in Kynigos et al., 1993, Kynigos, in press and involving their
learning process in Kynigos 1992, 1993, . Studies of related issues in school settings can be
found in Hoy les et al., 1992, Hoy les and Sutherland, 1989.

Methodology

In a setting encouraging an inovatory (with respect to the wider educational paradigm)
pedagogy with the use of computer technology and where a long time was given to the teachers

to form their personal pedagogies-in-practice, we set out to investigate a) their beliefs as
constructed during this specific classroom practice, regarding mathematical learning, their
pedagogical role and the role of computer technology and b) their, intervention strategies
regarding the aspects of the learning situations they refered to, the extent to which they were
embedded in the pupils' investigations and the kind of activity they intended to encourage.

Nine of the school's teachers were selected as subjects, chosen so that the classes they teach span
all the age groups. They were each observed and videotaped over the three "investigation"
teaching periods. The video recordings were used a) to transcribe all their verbalisations in the
classroom as well as those of the pupils they addressed respectively, b) to be able to capture and
reproduce important episodes including a view of the computer screen and c) to get a feel of the
classroom atmosphere in general. The researcher carried the camera and could thus follow the
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teacher or the action, focus in on computer screens or on people's faces and at the same lime,

keep a distance so as not to distract. This was made possible with the help of a remote

microphone attached to the teacher, so that verbalisations were clearly heard whatever the

distance between teacher and researcher. So, the video was used as a combination of a "holistic

note taker" and a "silent observer" (Harel, 1991). After the end of the observation periods,

semi-strucured inteviews of all nine teachers were carried out regarding their views on and

evaluation of the ways in which children learn during the "investigation" hour, how they

perceive titer own role and pedagogical strategy and how they compare this kind of pedagogy

and learning to the one which goes on during the normal curriculum activities. Verbatim

transcriptions of audiorecordings were made. Background data was also collected, i.e. all the

pupils' written presentations of their investigations and researcher notes on specific aspects of

each particular hour which may have influenced the atmosphere (e.g. a broken down computer).

The data is being analysed in two ways. Firstly, all teacher comments are interpreted by the

researchers regarding their intent and characterised accordingly. A first characterisation is

related to the aspect of the learning situation the comments refer to and to whether it is

embedded in the pupils' activity. The most frequent comments were then characterised with

respect to the kind of activity or response they entended to encourage as interpreted by the

researchers. The characterisations in this latter part of the analysis. were influenced by Hoy les

and Sutherland, 1989.

Secondly, episodes important in illuminating further the above characterisations or other aspects

regarding the teachers' interventions and in contextualising teacher strategies were identified

and used as vignettes (Kynigos, 1993). A vignette involved one or a series of related episodes

and is in some cases (as in this report) presented in a descriptive - summative (narrative) way

rather than in raw form for efficiency purposes. The teacher interviews and the pupils'

presentations of their work served as background data. The interviews in particular were seen as

revealing beliefs expressed outside the classroom setting.

Results.

Characterisation of teacher interventions.
The comments were characterised as follows:

Those embedded in_pupil activity, with respect to which aspect of the learning situation they

refered to, i.e. A the interactions between a group, B preocess - related,.0 mathematical content

associated with the normal curriculum maths, D techie fact, E Logomaths (programming) and

being in control of the computer.

Those not embedded in pupil activity i.e. addressing more titan one group of pupils, providing

disembedded information, frontal teaching and phasic communication.
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Additionally, the teacher's interaction with a group of pupils was made identifiable in the
transcripts and each such interaction was characterised with respect to whether the pupils had
requested it or it was the teacher's initiative.

Out of the five kinds of embedded comments, we were interested to analyse the four most
frequent ones with respect to: whether they were directive (D), in which case we further labelled
them as disciplinary (DI)), motivational (DM), nudge (DN) or factual (DF), whether they were
reflectional, in which case we labelled them according to the intent to reflect on a previous
action (Rpre) or a subsequent one (Rpost) and whether they intended to motivate the pupils.

Table A shows the percentage of each characterisation with respect to the total number of
comments made during the three hours of observation of this particular teacher.

TOTAL total D total RI
1M

[(DI)) (DM) I (DN) 1(DF) I (R pre) I(R post)
A 9.09% 3.57% 0.00% 357% 0.00% 0.00% 422% 2.60% 1.62% 1.30%

35.71% 23.05% 455% 1538% 2.27% 0.65% 9.09% 7.14% 1.95% 357%
C 7.47% 1.30% 0.00% 0.32% 0.65% 0.32% 6.17% 455% 1.62% 0.00%
D 8.44%

29.87% 11.69% 0.00% 3.57% 2.60% 5.52% 1558% 10.39% 5.19% 2.60%

F 357%
G 0.00%
H 0.00%
1 5.84%

39.61% 35.06% 7.47%

R 31.91%
U 68.09%

Table A

Avery large proportion of this teacher's comments are embedded in pupil activity (82.14% not
including D) and refer to the interaction within groups (9.09%), to procedural issues (35.71%)
and to school and Logo maths content (37.34%). Furthermore, there seems to bemore or less a
balance between directional comments aiming at specific pupil activity and those aiming to
encourage pupils to reflect on their past or future actions (39.61% versus 35.06%). In fact, if the
procedural comments are excluded (where we have 23.05% directional vs 9.09% reflectional
comments), the picture is even more in favour of the reflectional comments (3.57% vs 4.22%
for A, 1.30% vs 6.17% for C, 11.69% vs 15.58% for E). It is also particularly interesting that
regarding school mathematics content, her comments seem to mainly encourage pupils to
reflect. We notice a relatively small proportion of comments intending to motivate the pupils,
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which would favour the argument that they were engaged in their work. Finally, this teacher

would seem to be rather aciive and tend to be in control in interacting with the pupils since she

more or less intervened twice as many Imes on her own initiative than as a result of the pupils

request.

Embedded teaching: an episode

This is an episode involving three interventions to a group of 8 year-old pupils, made by the

above teacher over a period of two sessions. Her intention seems to be to take advantage of

their plan to make a planet next to their rocket, in order to encourage them to investigate how

to consruct a circle with the Logo turtle.

The group have finished their "rocket" project, with another hour and a half to go before the end of the
investigation. The teacher encourages them to enrich their project in the remaining time, and they suggest
making a planet. The teacher agrees and asks them how they will make a circle. The pupils at first say they don't
know how, and thus decide they will make a square planet! The teacher urges them to think about how they
could make a circle and they decide to try moving the turtle a bit and turning it a bit. many times. They type in
moves and turns alternately, but with no pattern to the input quantities. The teacher does not intervene for the
rest of that hour. The following week during the first 15 minutes or so. the pupils continue in the same way. At
some point however. they have a sequence of equal inputs to the turn commands. The teacher intervenes at this

point. suggesting to the pupils to look for a pattern. About 15 minutes later she comes back and asks how
they're doing, only to discover that they still have not come to the desired conclusion. i.e. constant turns and

moves. She accepts their efforts and asks whether they can predict what shape will result from them, at which

point they say that it won't look very much like a circle, as it will have straight bits. She then suggests that they
had better rethink about their turns, and points out on the screen the result of their one relatively successful
sequence. asking them to rethink their strategy and to compare the results they have had so far. She also asks
them not to erase their previous commands, so that they can later reflect upon them and finally she feels she has

to spell it out for them by saying: "see if in this sequence where the turns were the same it was more like a

circle". Eventually the students come to the desired conclusion and announce it to her, but they do not change
their figure accordingly. nor do they mention the planet in their written essay!

The teacher is obviously attempting here to encourage problem solving activity and some

autonomy on the part of the students, even though their final reaction is disapointing. At the

beginning she urges them to investigate an interesting problem which has stemmed from their

own, self-initiated goal, even though their initial reaction is to avoid it entirely. Site allows them

plenty of time for trial and error, and intervenes at the crucial moment, when they have

approximated a solution (although it turns out that it was by chance) nudging them towards'the

right direction. Finally, and when they are running out of time, she becomes more heavy-handed

and directional, explicitly suggesting that they should reflect and predict, pointing out to them

which specific sequence will give them the clue for their solution, and showing them the resulting

computer feedback.

She thus seems to be implementing a strategy to influence the.learning environment, both to

discourage an unreflective use of Logo (observed and highlihted in related research, Leron 1985,

Noss and Hoyles, 1992) and to help the children to focus on the interesting and powerful ideas

that they use in their projects. However, there does seem to be a negotiating problem here.

Nudges and "light" encouragement seemed to bring not much result in pupils perseverence in

investigating a mathematical pattern or even in forming a theorem - in - action, to use

Vergnaud's term (Vegnaud, 1982). She thus gradually resorts to more directive methods in order
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to produce the desired result, and still the students do not seem to have perceived this as a useful
learning experience. It is interesting to note that such directive interventions as were used
towards the end of this episode differ widely from directive interventions as initial teaching
strategieS, with no previous effort towards influencing students into active problem solving of
the own. This is a difference which the quantitative analysis used above is not sensitive to,
although certain insights can be reached by comparing the percentage of directional and
reflective interventions each teacher has used. The episode also highlights the teacher's use of
the computer as an educational tool. She points the students' commands out on the screen,
relates them to the computer feedback and urges them to keep their approximatory efforts on
screen, so that they can later compare them to the commands that were closer to the desired
result, and reach their own conclusions.

During the subsequent interview, the teacher said that her experience with Logo had influenced
her overall teaching, that she wished the principles of co-operation, initiative and problem-
solving could be carried on to other curriculum subjects also, although she thought that was very
difficult, and that the children have benefited greatly from their experience with Logo, which
they also transfer to other subjects (e.g. they had learned how to work effectively in small
groups etc.). Her own perception of her interventions was that they mainly concerned group
dynamics: when asked to describe what she does during the classroom sessions, she said that she
walks around the classroom, intervening only when asked to, or when she observes a group of
students who are either arguing or caught into a cycle of doing the same thing again and again
and getting nowhere, and that when she does intervene, her first concern is to get the children to
co-operate. Thus, her beliefs and perception of her actions expressed onside the classroom
situation presents interesting differences to the intervention strategy indicated by her comments
in the classroom. This finding corresponds with the research mentioned earlier (see also Sosniak
et al., 1991) distinguishing beliefs and beliefs-in-practice and warrants further analySis.

Conclusions.
The case study highlights the complexities of trying to observe and interpret teacher
interventions in a classroom situation, since analysis based on a detailed characterisation of each
intervention benefits from the in-depth illumination of contextual aspects of specific
intervention situations which may be important in forming an overal profile of the teacher's
pedagogy. The evidence seems to point to some distance.between the teacher's espoused beliefs
as expressed outside the classroom setting and those underlying her actual pedagogy, as for
instance, the difference between her classroom activity and the importance she attributed to-the
teacher's role in shaping the interaction within pupil groups. This teacher seems to have
constructed an inovatory pedagogy characterised by interventions embedded in pupils' activity
and referring to interaction within groups, procedural issues, Logomaths and school maths.
Within this context, however, refering to mathematics content and negotiating the validity of
mathematical investigation seems infrequent and just one amongst several priorities.
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LEARNING TO TEAC : FOUR SALIENT CONSTRUCTS FOR TRAINEE
MATHEMATICS TEACHERS

Anne Meredith
Department of Education, University of Cambridge

ABSTRACT
This factor analytic study maps out four salient constructs for trainee mathematics teachers and proposes an
alternative theoretical model for the interpretation of attitudinal research. The sample was drawn from eight
cohorts undertaking PGCE courses in the university sector. Views of different aspects of teaching and
learning to teach were elicited on two occasions using Likert-item questionnaires (the second questionnaire
being a refinement of the first based on results obtained). Empirical results from both questionnaire
administrations uphold three theoretical a priori ideas of theory-practice relationships, apprenticeship
learning and pedagogical content knowledge but also elaborate these from the trainees' perspective. In
particular, pedagogical content knowledge appears to comprise at least two sub-components. It is suggested
that the emergent constructs are worthy of further elaboration through qualitative work and from a social
representations perspective.

INTRODUCTION
This study is part of a larger investigation of how trainee mathematics teachers develop knowledge
and expertise within school-based training. To understand trainees' learning it is important to
understand conceptions of teaching and learning to teach and how views about these concepts
intersect with training experiences..A wide literature asserts that attitudes, beliefs and expectations
structure teachers' decisions and classroom behaviours (Cooney 1985, Clark and Peterson 1986,
Bromme and Brophy 1986, Brookhart and Freeman 1992, Thompson 1992). These writers suggest
that entry beliefs affect cognitive change in teacher education and that orientations then determine
the professional knowledge acquired and used by teachers. Such accounts have in common the
underlying view that dispositions to act reflect the psychological states of individuals and primarily
reflect theoretical models from the professional literature.

However, as a prerequisite for understanding trainee learning, little appears to have been done to
map out representations held by trainees as a group against those held by teacher educators. How do
trainee teachers conceive of important aspects of learning to teach and how do these constructs
relate to our a priori ideas? This study therefore sets out to chart some ideas from the professional
literature against the representations of teaching and learning to teach held by trainees, with
attitudes as indicators of those representations. It aims to clarify useful constructs for describing
trainee teachers' views to important aspects of their training and, simultaneously, to develop a
reliable instrument for charting these. A large scale survey was considered necessary to generate the
statistical information needed to meet these aims.

Although various constructs could have been chosen, this study focuses on three ideas which
permeate the literature and which arose in a previous study (Meredith 1992), namely; pedagogical
content knowledge (pck), theory-practice relationships (tp) and apprenticeship learning (a).

The relationship between theory and practice appeared to have high face validity for trainee
teachers involved in the pervious study and as a construct.was characterised by different aspects of
the traditional-radical continuum proposed by Wilkin (1990 p.7). Theory embedded in and
emerging from practice is contrasted with theory as a product, independent of and informing
practice.
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The previous study also indicated that trainees' perceptions of knowledge for teaching mathematics
could be usefully explored (see Meredith 1993). This construct, referenced to mathematics, was
characterised by different aspects of Shulman's pedagogical content knowledge which is 'that
special amalgam of content and pedagogy that is uniquely the province of teachers, their own
special form of professional understanding' (Shulman 1987 p.8). Teaching as a process leading to

the transformation of mathematical knowledge and an understanding of learners was contrasted
with a static view of teaching as the transmission of pre-existing subject knowledge.

Finally apprenticeship learning emerged as a third idea which seemed especially important for those
trainees who were undertaking a majority of their training in school. The notion of peripheral
participation (Lave and Wenger 1991) and learning through association With more experienced
others was contrasted with a more individualistic stance which involves being left alone 'to learn to
teach through trial and error and by reference to past personal experience.

METHODOLOGY
A Likert-item questionnaire, to explore trainees' attitudes towards these ideas was designed in a
series of stages. The initial sources of statements for the present study included:

previous trainees' verbatim comments;
trainees' comments edited for parsimony and clarity;
Likert-item statements which previously 'worked well' (for instance, eliciting a range of
responses or appearing to resonate strongly with trainees);
Likert-item statements modified to reflect trainees' responses;
ideas in the literature.

Together these sources generated around 80 items. Criteria of clarity, simplicity and specificity
were used to select a smaller sub-set and these items were then checked for ambiguity and
predicted balance of response. After any necessary rewording, item pools of 10 statements for each
construct, worded equally. in positive and negative directions, were formed. The final questionnaire
therefore comprised 30 statements with each item pool evenly distributed throughout:

Respondents were asked to indicate the extent to which they agreed or disagreed with each
statement choosing from strongly agree (SA), agree (A), unsure (U), disagree (D) and strongly
disagree (SD). Two versions of the questionnaire (A & B) were produced to control for possible
sequencing effects. Version B presented the same statements but in reverse order to Version A.
Following its first administration, the questionnaire was modified in line with results and re-
administered to the same cohorts seven months later.

The subjects of the survey were trainee mathematics teachers on one-year Post-graduate Certificate
in Education (PGCE) courses in eight English University Departments of Education (UDEs). This
was a large opportunity sample from the university sector representing 2743% and 22.1% of that

trainee population (214 and 170 questionnaires returned for the first and second administrations
respectively). The samples comprised every student in each of eight cohorts who was present on the

day of administrations and consented to participate and included 148 trainees who completed the
questionnaire on both occasions.

ANALYSIS
The data was analysed using the Factor and Frequencies sub-programmes of the Statistical Package
for the Social Sciences (SPSS). The main results were obtained from factor analysis with the
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descriptive statistics used as a basis for refining the Liken items.

Factor analysis is a widely accepted technique for identifying meaningful factors which summarise
the patterns of association within the data in a parsimonious way amenable to interpretation. Using
this approach items which measure the same construct load on the same factor and are
distinguishable from those which measure other distinct factors; the underlying assumption being
that factors are uncorrelated. Factor analysis also indicates the minimum number of factors which
underlie the variables and the strength of the relationship between each variable and factor.
Analysis was iterative and exploratory throughout, in line with the aim of refining and clarifying
concepts .

RESULTS

First Administration
The completed questionnaires were coded for 34 variables, the Likert items being scored on a 5
point scale ranging from 2 (SD) to 2 (SA) with 0 indicating uncertainty. It was unnecessary to
reverse this scoring for negatively directed statements because item inter-correlations indicate the
real relative direction of all statements. A full range of responses was elicited on all but 3 items; the
missing categories on these being either SA or SD. The correlation and anti-image correlation
matrices confirmed sufficient strength in the relationships between the items and established the
appropriateness of a factor model.

Two tests, the percentage of total variance attributable to each factor and the scree plot of
eigenvalues (total variances) against each factor indicated that four or five factors were necessary to
represent the data. Full solutions for four and five factors were therefore obtained using principal
components extraction and orthogonal rotation. Solutions from oblique rotation showed no
appreciable correlations between factors and agreed well with those from the orthogonal rotation,
suggesting that both the four and five models were generally robust.

Comparison of the 4-factor and 5-factor solutions (restricted to items with loadings > 0.4) revealed
identical factor structures except for Factor III (on the 4-factor model) which subdivided into two
new factors on the 5-factor model (re-labelled 1115 and V5). The relationship of the two models can
be represented as follows:

4-factor model 5-factor model

II > II

III > III (re-labelled 111 5)
IV IV

V (re-labelled V )
FIGURE 1-The relationship of the 4-factor and 5-factor models

Subsequent analyses confirmed the greater stability and consistency of the 4-factor model. However
Factors 1115 and V5 were retained because they reveal distinct but weak aspects of Factor Ill. Table
I shows the relationship of the questionnaire items to the final solution for the 4-factor model after
deleting items with loadings < 0.4 (to ensure that only relatively pure items were included).
Because it was the weakest factor and comprised a disparate collection of items, Factor IV was
subsequently abandoned. The three remaining factors are interpreted below together with Factors
1115 and V5.
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TABLE 1-Rotated Factor Matrix for 4-Factors anon -load and low (<) load items removed!

Q : Likert-item Statements Factor
I II III IV

28 tp Ultimately, theoretical aspects of training contribute as much
to good teaching as classroom experience

-66

5 a Teaching is a craft skill which is best learnt on the job 63
7 tp The best training is practical and drawn from the 'chalk face' 61

19 tp Educational theory does not hold up in the classroom. 52
25 tp Practical experience of teaching is an adequate training in

itself.
-46

11 a I prefer to be left alone in the classroom to experiment with
my teaching.

44

22 tp A theoretical framework helps teachers to understand and
explain learners' development in mathematics

-42 -34

14 a Faced with a difficult classroom situation I would try to deal
with it in a similar way to the usual class teacher.

63

29 a For me, learning to teach mathematics involves imitating a
model teather of mathematics.

60

8 a You cannot learn to teach by copying an established teacher. -58
13 tp 1 should be able to justify my teaching decisions by reference

to theory.
47

15 pck My task as a mathematics teacher is to transform
mathematical ideas to make them understandable.

-37 45

27 pck My understanding of mathematical ideas has changed in the
process of teaching.

66

6 pck My experience of teaching has made me re-examine some of
my own mathematical knowledge.

63

3 pck Mathematical knowledge is more important in teaching than
knowing how to provide appropriate mathematical activities
for pupils.

-59

18 pck Apart from subject matter there is no other knowledge base
for teaching mathematics.

-53

9 pck The mathematical mistakes of most learners tend to be
arbitrary and illogical.

-51 37

23 a I learn best by making and reflecting upon my own mistakes. 66

24 pck It is very hard to anticipate which topics learners will find
difficult

.57

21 pck The ability to analyse mathematical reasoning processes is a
necessary part of mathematics teaching.

48

10 tp The most valuable educational theory develops from within
practice.

33 40

% of variance explained 12.9 10.2 9.0 7.6

Notes:
1. The original classification of each statement:

tp theory-practice relationships
pck pedagogical content knowledge
a apprenticeship learning

2. Item loadings on the factors are given to 2 d.p.
3. The direction of the loadings for factor III in the oblique solution were reversed in the

orthogonal solution because they emerged from the orthogonal rotation 180° out of phase.
However, the orientation in the oblique solution is consistent with the meaning of factor III as
described later. The signs on the loadings for Fact& III have therefore been reversed for all
orthogonal solutions and tests reported.
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Factor I Teaching-Craft (TC)

5/7 items comprising Factor I are classified as theory-practice suggesting that this factor represents

the relationship of theory to practice entailed in particular views of the nature of teaching. The
positive pole sees teaching as a practical craft most appropriately learned through induction as an
apprentice on the job (Q5 & Q7). The existence of an underpinning body of professional knowledge
seems to be denied (Q28 & Q19); learning to teach is highly idiosyncratic and individualistic and
not about acquiring shared knowledge (Q11). Taken together then, these items seem to assert the
absence of any implicit or explicit theoretical model for teaching. The positive end of this factor
therefore appears to be concemed with teaching solely as a craft skill requiring neither
propositional knowledge nor intellectual activity but rather, practical 'know how'.

The contrasting (negative) pole sees theory as upheld at the classroom level (Q19) and values its
importance for informing practice (Q28). The existence of a shared body of knowledge which
cannot be acquired in isolation or by apprenticeship alone is implicitly asserted (negative responses
to Q5, Q7 Q11 & Q25). The negative pole therefore appears to be represent teaching as an
intellectual activity drawing upon a collective body of professional knowledge.

Factor II - The Apprenticeship Ideal (AI)

Factor II agrees partly with the apprenticeship construct, having 3/5 items classified as such (Q14,
Q29, Q8) These items see learning to teach as a modelling exercise and represent a stereotypical
view of apprenticeship entailing observation and imitation of a 'master'. The other items (Q13 &
Q15) seem to relate to the trainees' understanding of the elements to be learned and aspirations for
the outcomes of training. This may indicate the transitional position of the trainee; imitating a role
model is a means to an end and not an end in itself.

Implicit in all items loading on Factor H is the image of an ideal practitioner, possessing both
practical expertise and theoretical knowledge. The positive pole of this factor therefore seems to
reflect a highly optimistic view of the process and product of apprenticeship based on an idealistic
image of the expert teacher. This is termed the Apprenticeship Ideal. It is consistent with the
proposition that, by virtue of their position, apprentice learners 'can develop a view of what the
whole enterprise is about, and what there is to be learned' (Lave and Wenger 1991 p.93) but
probably represents a fess realistic position.

Factor III - Pedagogical Content Knowledge (PCK)

Factor III is comprised entirely of items classified as pedagogical content knowledge and is
therefore unequivocally concerned with the hypothesised construct. It also appears to be a bi-polar
factor. The positive pole concurs with Shulman's idea that a trainee's own understanding of subject
matter is transformed through teaching (Q27 & Q6) and learning to represent the subject
appropriately for learners (Q3). Learning to match mathematics to the needs of intelligible learners
is seen as more important than subject knowledge (Q3 & Q9) which is insufficient in itself (Q18).
Hence knowledge of mathematics is located within the knowledge needed for teaching.

The contrasting (negative) pole can be interpreted as a view of the trainees' own subject knowledge
as unchanged and unexamined but of paramount importance. Thus the only knowledge .really
needed for teaching is that of the subject. A view of mathematics as a rigorous, necessarily given
body of knowledge may also be associated with this pole, explaining the notion that learners'
mistakes are random and irrational. The negative pole of this factor therefore seems to represent
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being closed to new ways of thinking about mathematics, both at the trainees' own level and for the

purposes of teaching. This amounts to the view that there is little to learn in teaching mathematics.

Although based on a limited number of defining items in what appears to be a less stable model,

interpretations of Factors 1115 and V5 illuminate possible sub-components of the pedagogical

content knowledge construct. Table 2 shows the relationship of questionnaire items to the final

solution for factors 1115 and V5 from the 5-factor model.

TABLE 2-Extract from the Rotated Factor Matrix for 5-Factors Showing Factor M5 and V5 [non-
load and low (<3) load items removed]

Q # Likert-item Statements Factor
I II III IV

6 pck My experience of teaching has made me re-examine
some of my own mathematical knowledge

0.82

27 pck My understanding of mathematical ideas has changed in
the process of teaching.

0.78

3 pck Mathematical knowledge is more important in teaching
than knowing how to provide appropriate mathematical
activities for pupils.

-0.44 0.33

18 pck Apart from subject matter there is no other knowledge
base for teaching mathematics.

0.65

9 pck The mathematical mistakes of most learners tend to be
arbitrary and illogical

0.63

26 a On the job training offers little room for developing
innovative methods

0.35 041

30 pck Pupils find Algebra difficult mainly because it has not
been explained clearly enough to them

0.34

# The original classification of each statement

Factor 1115 Selfreferenced Learning (SRL)

This factor appears to represent aspects of pedagogical content knowledge which concern the

trainees' own knowledge and understanding of mathematics. The association of Q3 with Q6 and

Q27 suggests that changes in the trainees' own understanding may be connected with thinking

about teaching tasks. Hence, the emphasis is on the trainees' own learning of and about
mathematics through teaching the subject. This therefore is a representation of the trainee as a

learner of mathematics.

Factor V5 - Learner-referenced Teaching (LRT)

Factor V5 complements Factor 1115, emphasising pedagogical content knowledge as it relates to

teaching based either on subject content or on meeting learners' needs. Thus the positive pole

stresses teaching driven by subject knowledge whilst the negative pole, in contrast, links
pedagogical knowledge to understanding learners and knowing how to respond to their difficulties.

This dimension therefore describes the trainee as a teacher, either of mathematics or of learners.

Sequencing and Acquiescence Effects
The correlation matrix from a full and unrestricted factor analysis with the questionnaire version

listed as the first variable revealed no apparent sequencing effects and examination of the

positive/negative balance of the mean scores for all items found negligiblesequencing effects.
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Second Administration

A second 31-item version of the questionnaire was formed by preserving the most strongly loading
items on Factors I, II, 1115 and V5. 11/15 of these 'core' items were retained unchanged since the
initial descriptive statistics indicated that parametric assumptionswere met. The remaining 4 items
were amended slightly to shift the balance of response. New items, attempting to capture facets of
the factors as characterised, were then added so that each of the4 factors had 7 associated items.

Tests on the second questionnaire showed improvements on all criteria and response sets were
more evenly distributed as a result of rewording particular statements. Overall, the results from the
second administration supported the interpretations proposed with all but four items loading as
predicted. The interpretation of TC and AI were strongly upheld by the emergent factor structure
and SRL was the strongest factor in the solution supporting the hypothesis that this is a sub-
dimension of PCK. Interestingly LRT split into 2 sub components, possibly indicating 2 further
dimensions of LRT and thence PCK.

CONCLUSION
Robust and stable factor solutions over 2 administrations demonstrate the validity of four emergent
constructs and provide the following strong and sensible model on which the final scale instrument
is based:

TC )

FIGURE 2-Emergent Constructs

KEY:

TC Teaching Craft

Al Apprenticeship Ideal

PCK Pedagogical Content Knowledge

SRL Self-referenced Learning

LRT Learner-referenced Teaching

incorporated into the final questionnaire

The factor structures of the emergent constructs match many aspects of the hypothesised constructs
but also capture subtle aspects of trainee thinking which go beyond the a priori categories. In
particular, from the trainees perspective it appears that:

ideas about the relationship of theory to practice are related to particular viewsof teaching; as
a craft skill devoid of theory at one extreme and as an intellectual activity, grounded in
theory, at the other.
views of apprenticeship relate to a representation which is stereotypical, optimistic and based
upon the image of an ideal, expert teacher.

trainees' views about PCK represent their openness to learning within teaching which may
relate to two sub-domains; the trainees' own learning of mathematics and learning to teach
mathematics.

Finally by reinstating 'attitudinal objects' on which attitudinal measurement was originally based
this study attempts to work within a theoretical framework which goes beyond the individual.
Social representations theory sees attitudes as 'consequences of participation in social life'
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(Duveen and Lloyd 1990 p.3). From this perspective, cognitive representations (reflections of the.
social world which are shared amongst those who share the same environment) are distinguished
from response dispositions which may reflect an individual's personal experience and distinguish
him/her from others in the group (Jaspars and Fraser 1984). It is the first of these, now neglected in
teacher education literature, which constitutes social reality for the group and influences individual
behaviour. In revealing subtle differences in the representations shared by trainees and teacher
educators this study points to the importance of social representations for understanding trainee
learning.

Current in-depth qualitative work seeks to develop these theoretical ideas whilst elaborating the
empirical findings from this study.
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TEACHERS' MATHEMATICAL EXPERIENCES AS LINKS
TO CHILDREN'S NEEDS

Hanlie Murray, Alwyn Olivier and Net Human
Research Unit for Mathematics Education

University of Stellenbosch, South Africa

As part of our on-going support for teachers implementing a problem-centered ap-
proach to mathematics teaching and learning, we run in- service programmes for
teachers. Some teacher groups have very weak mathematical backgrounds and very
rigid and instrumental perceptions of the nature of mathematics and mathematics
teaching. The technique of posing problems that are challenging to the teachers
themselves and then encouraging reflection on their experiences has proved to pro-
vide a driving force and a network of connections that enable us to address in a very
limited time a number of major issues, ranging from perceptions about the nature
of mathematics to the practicalities of classroom organisation.

Introduction

Research on different in-service (INSET) programmes and attempts to identify the reasons
why some programmes are more effective than others, have led to various descriptions of the
immediate outcomes of successful programmes, e.g. Joyce and Showers (1980); Kinder and
Harland (1994). Working back from these desired outcomes it is clear that successful INSET
programmes should address at least two main issues: firstly, teachers' perceptions (beliefs
and attitudes) and secondly, the skills that teachers need for day-to-day classroom activities.
Researchers generally agree that both of these are essential before lasting effects can be
observed at classroom level: "To master a new approach we need to explore and understand
its rationale, develop the ability to carry out the new strategies, and master fresh content"
(Joyce & Showers, 1980:380). "They have to understand, at the level of principle, what they
are trying to achieve, why they are trying to achieve it" (Rudduck,1991:92), but "... changed
awareness is no guarantee of changed practice." (Kinder & Harland, 1994:36).

There are different ways in which an INSET programme may attempt to address these two
issues, depending on which perceptions and which skills are addressed.

We believe that, for mathematics teachers from kindergarten to twelfth grade, the percep-
tions that radically influence their classroom practice concern

. the nature of mathematics

the way mathematics is both learnt and applied in life

children's mathematical thinking

. the aims of school mathematics

how children best learn mathematics, given particular aims.
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The necessary skills are clearly those that enable the teacher to create and sustain on a
daily basis the learning environment which will support the type of learning in children the
teacher has come to accept as desirable.

Our own perspectives of the above matters are based on a socio-constructive view of know-
ledge, and on our continuing research on young children's thinking and on environments
which seem to support their thinking. We try to implement these ideas in the classroom
through a problem-centered approach to mathematics learning and teaching (Murray, Olivier
& Human, 1993).

INSET programmes with similar views on mathematics education may use a particular tech-
nique as part of their programmes: Such programmes expose teachers to doing mathematics
at their own level as a vehicle to encourage teachers to reflect on the nature of mathema-
tics and mathematics learning (e.g. Simon & Schifter, 1991; Hadar & Hadass, 1990; Corwin,
1993). However, much like the ELM programme (Simon & Schifter, 1991), we take it one
step further: We actively use teachers' mathematical experiences as the core around which
we construct the rest of the programme.

For the purposes of this paper, we limit our discussion to two-day INSET workshops for lower
elementary teachers with a very low perception of their own mathematical abilities, who
possess only limited skills and little explicit understanding of basic whole number arithmetic.

Organisational information

The number of participants for such a workshop has varied from 34 to 47, and consisted
mainly of K-3 teachers, with a sprinkling of upper elementary teachers who function as
subject heads for mathematics. Most of the teachers had only had school mathematics up
to 9th grade, and some had left school after tenth grade. They all had at least a three-year
teachers' diploma. During their school and college years they had, at least for mathematics,
been exposed to quite rigidly traditional views of mathematics as a series of set formulae
which had to be memorised and then applied to the appropriate word problems. Although
it appeared during the workshops that the teachers possessed strong intuitive powers for
solving problems they did not experience as school-type problems, these thinking skills had
never been sanctioned and initially most teachers were embarrassed to talk about them.

It seems sufficient to attempt only the following in the workshop:

1. Addressing teachers' perceptions about the nature of mathematics and how mathema-
tics is learnt and practiced (used).

2. Addressing teachers' perceptions about their own mathematical abilities and how they
(can) do mathematics.

3. Describing and justifying a problem-centered approach to mathematics learning and
teaching.

4. Sharing information on some basic guidelines for establishing a problem-centered learn-
ing environment in the classroom.

According to our basic technique, the activities that address teachers' personal views (points
1 and 2) also supply us with direct links to children's thinking and children's needs (which
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we present by means of many examples of children's work and videos of children solving
problems), which lead directly to points 3 and 4.

We now briefly elaborate on the main ideas to be covered under points 3 and 4.

A problem-centered approach

In brief, the problem-centered approach implies that the teacher regularly poses problems
to her students that the students do not experience as routine problems, and that they Kaye
to construct solution methods for the problems with the tools that they have available (theo-
rems in action, number knowledge at different levels of development). Students are expected
to share ideas, to discuss, justify and explain among themselves. Although students may
(and should) experience classroom events as informal and child-centered, the teacher plans
the classroom activities and tasks in accordance with a simple but important set of guide-
lines that we have been able to formulate through longitudinal research in problem-centered
classrooms:

Certain simple but powerful activities that help students to develop a flexible number
knowledge, which directly influences the solution strategies they construct

Different word problem types that suggest different computational methodsif some
problem types are omitted, certain methods will not be constructed. Teachers there-
fore design their word problems from a list of basic problem types so that the different
meanings of the four basic operations and fractions are all covered

Students mainly learn through voluntary interaction with each other, and not through
listening to the teacher, but the teacher has to know that social-type information still
has to be supplied to her students (e.g. recording skills, and knowledge involving mea-
surement). The ability to distinguish between the logic of a solution method and the
way in which it is recorded is essential for a teacher.

The problems posed to teachers in the workshops

When we use the teachers' own mathematical experiences and their reflections on these
experiences as a laboratory to provide clues to (or empathy with) children's needs, the basic
assumption is that adults' and young children's responses to novel mathematical situations
are sufficiently similar to use in such a way. Simon and Schifter state this categorically:
"Teachers' learning can be viewed in much the same way as mathematics students' learning."
(1993:312). Although we accept this as probably generally true, we have found that teachers
(and other adults) only respond in ways that can be used as departure points for children's
thinking when the cannot solve the problems automatically (or mechanically).

The choice of problem for a particular audience is therefore crucial. It is important that
the problem situation makes sense, even though it may be ambigu9us (this is discussed
later). We have never used a puzzle-type problem or investigations, since we do not know
whether a situation that has no clear connection with any syllabus content will have the
same powerful effect on the teachers. We know of INSET programmes where investigations
have been used very effectively, but the informal lore among the teachers themselves has
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it that when teachers only experience enjoyment with problems that they do not relate to a
syllabus, they view these experiences as add-ons, "something you do every Friday."

Furthermore, it should be possible to solve at least the initially-posed problem(s) by direct
modeling, i.e. by drawing or a sketch, because direct modeling enables a person to easily
resolve an incorrect choice of a drilled method at a deep level. A logical refutation often only
serves to strengthen existing beliefs about the nature of mathematics.

It should be kept in mind that the problems used create powerful situations only because
they suit these particular audiences other audiences may need different problems.

Some problems and how they are used

The problem is always presented to the group as a whole, teachers are encouraged to con-
sult with each other, to leave their seats and move around if needed. The presenter moves
around, trying to maintain a very low profile, but identifying a variety of different conceptu-
alizations of the problem. Different teachers are then requested to explain on the overhead
projector how they had conceptualized and solved the problem. This is followed by a general
discussion, eliciting from the teachers the links that need to be established to future topics,
or illuminating and emphasising points that will be referred to again. It must be emphasised,
that these discussions are very thorough and that the teachers really share not only their
mathematical thinking but also especially their feelings and fears; i.e. all the factors which
could have inhibited or supported their thinking.

O The apple tarts
Mrs Daku bakes small apple tarts. For each apple tart she uses of an apple. She has
twenty apples. How many apple tarts can she bake?
The most common solution methods generated by the teachers are:

1. Incorrect choice of a drilled method.
Eva: 20 x a = 15

2. Direct modeling of the situation.
Twenty apples are drawn and each is divided into and a i; the a pieces are counted
(giving twenty tarts), then the remaining quarters are grouped. Sometimes the re-
maining quarters are grouped into threes, giving another six tarts with two quar-
ters left; sometimes the remaining quarters from each group of three apples are
immediately dealt with.
Lillian solves the problem in this way, having first reduced the problem to ten ap-
ples and afterwards doubling the answer.
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3. Numerical approaches which closely model the problem structure.
Cassius: "Twenty apples give me at least twenty tarts. With the twenty quarters
I make five apples. Five apples give me at least five tarts. With the five quarters
left I make one apple. There are two quarters left. I have twenty plus five plus one
tarts, and half an apple left."
Sibongile: "Three apples give four tarts. How many groups of three in twenty? Six
groups of three is eighteen. So eighteen apples is equal to 6 x 4 tarts. That is
twenty-four. There are two apples left. That's another two tarts and half an apple
left."
Beauty: "I thought about the kitchen. First I cut all the apples into quarters
and then I find out how many groups of three I can make. So I do 20 x 4 = 80;
80 3 = 26 remainder 2." Beauty knew she could make twenty-six tarts, but she
needed prolonged discussion and an inspection of one of the direct modelers' draw-
ings to decide what the remainder of two signified.

These discussions generate a great deal of excitement among teachers, especially when
they are informed that from the formal point of view the problem involves division with
a fraction, which is only introduced in the local seventh grade school syllabus.
The following important perspectives arise naturally out of the whole episode:

1. Attempts to classify the problem type and choose an operation made the problem
more difficult for some teachers, and an incorrect choice of operation prevented
some teachers from solving the problem. Teachers who simply responded to the
structure of the problem itself and who tried to make sense of the situation, using
the tools they had available and felt confident with, were invariably successful.
This very important perspective serves as a link to the next session during which
examples of young children's responses to problems are studied, and comparisons
made between the child's view and the adult's view of problems which seem quite
routine to adults. Mistakes that children make when they feel forced to "choose an
operation and apply a procedure" are discussed extensively.

2. The tools that were used to solve the problem are identified: a knowledge of frac-
tions, of whole numbers and of some recording skill. This is elaborated on in a later
session, where the development of young children's number concept is studied, and
a practical demonstration, with some teachers acting as children, and videotaped
classroom scenes give some ideas of suitable number concept development activi-
ties. The role of the teacher regarding the "social knowledge" component of mathe-
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matics, and the development of communication skills, both verbal and written, are
also discussed.

3. The teachers are asked to reflect on how they went about solving the problem: when
did they talk to one another, about what did they talk, what was the main effect of
these discussions on their thinking processes and why, etc. These issues touch on
the classroom culture, the didactical contract between teacher and students, the
nature of knowledge and how knowledge is constructed (individually and socially),
some characteristics of a good learning environment for mathematics, research-
based information on young students' own perceptions of what constitutes a good
learning environment, etc.

0 Mr Sishuba
Three friends help Mr Sishuba to do a job of work. Two of the friends work for the whole
day, but the third friend only works for half the day. Mr Sishuba gives them R60 all
together. How should they'share the money?
The most common solution methods are:

1. An attempt at proportional sharing.
Lungie: "There are three friends, so divide sixty by three. That gives twenty. But
the one worked for half the day, so take R10 away from him and give it to the other
two. So two get R25 each and one gets R10."

2. A different attempt at proportional sharing.
Nonzuzo: "Give the friends R20 each, but then take away R10 from the one. Divide
the R10 into three equal portions and share them out. Two friends get R23,66 and
the one friend gets R13,66."

3. A proportional sharing out, directly related to the time worked.
Maud:

R60.
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4. A proportional sharing out in which the units are first equalised.
Tom: "The three friends worked for two-and-a-half days altogether. I make that
five half days. Five goes into sixty twelve times. So it's R12 for half a day. Two
friends get R12 + R12 each, and the other one gets only R12."

The discussions here revolve mainly around the fact that the problem can beinterpreted
in different ways according to the practical situation. Teachers who use the first solution
method are often adamant that the remaining two friends had to work harder to finish
the job after the other one had left, and shodld be paid accordingly. Another argument
is that the third friend had abandoned them and should be punished as a result.
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We use this problem as an introduction to the role that the context plays, i.e. there-
fore not only the basic mathematical structure of the word problem but the (supposedly
irrelevant) details of the setting itself. When this idea has been discussed briefly, the
following problems are posed in succession as a further elaboration:
Mr Bengu has fifteen pails of water with which to irrigate his 21 beds of vegetables. How
should he share the pails among the 21 beds?
Mother has a big jug of cooldrink which holds ten glasses. She thinks that she may not
have enough cooldrink for all the children, so when she pours out the cooldrink, she only
fills the glasses full. How many of the 4 -glasses can she pour from the jug?
After a very brief discussion, teachers quickly see that Mr Bengu's problem is the same
as Mr Sishuba's, yet it is very easy to solve and much less ambiguous than Mr Sishuba's.
They then notice that the cooldrink- and apple tart problems have the same structure,
but insist that the cooldrink problem is much more difficult than the apple tart problem.
This activity leads to the study of the different word problem types. Teachers are now
asked to reflect on how students may respond to some word problems, and are then
asked to make up word problems for particular problem types, keeping in mind the
variables that affect young children's understanding of a particular word problem. A
number of very important ideas emerge during this discussion. For example, different
cultures and different backgrounds should not be ignored in the mathematics class-
rooms, but should actually be subjected to discussion and comparison. Also, the very
limited ideas that children have of the world around them are discussed.

Fractions
Whereas the previous problems were selected to provide mathematical experiences for
the teachers themselves, the following activity aims at demonstrating the use of chil-
dren's different methods to create learning opportunities for the class. Teachers are
given a set of simple sharing problems that lead to fractional parts, and are requested
to solve them in ways that they think young children might use.
For example, one of the problems is: Share ten sausages equally among six friends.
Through different direct modeling strategies, teachers generate the following solutions:

one and a half and a sixth
one and four sixths
one and two thirds

The resulting discussion then revolves around using this situation to start students
thinking about equivalent fractions. The main message here is that the children them-
selves generate mathematical ideas that are sufficiently rich to initiate and support
discussions about new topics, provided the teacher chooses a suitable problem.

Evaluation

Free-format evaluations invited from teachers at the end of a workshop were unanimously
positive and enthusiastic. Most of the teachers mentioned that they now "knew where to
begin" in their own classrooms, but that they desired a follow-up workshop in approximately
six months' time. About 10% of the teachers involved suggested that the workshop be spread
over three days, not to deal with more issues but to give them more opportunity for discus-
sion and reflection. About half the teachers responded in person as well, stating that the
workshop was the most meaningful and radical training experience that they had ever had.
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We mentioned in the beginning that workshops with any chance of lasting influence probably
need to address the two main issues of beliefs and skills. Since the teachers' free comments
mentioned both these issues extensively, there is at least the possibility that the workshops
were to some extent successful. It is, unfortunately, the case that no workshop can really be
evaluated until its effects on classroom practice can be observed. Changed classroom prac-
tice is yet again heavily dependent not only on the quality of the workshops, but also on
factors like peer, principal and supervisor attitudes and support.

Conclusion

It has been proved possible to identify some problems; which when posed to teachers dur-
ing a workshop, will supply them with mathematical experiences that can serve as links to
both the basic principles of a problem-centered approach, as well as to the practicalities of
classroom organisation and the flow of classroom activities. Where the basic principles of a
problem-centered approach involve a particular perspective on the nature of knowledge and
on how knowledge is acquired, the teacher's own experience when solving a problem can en-
courage reflection on what mathematics is, how mathematics-related learning takes place,
and the factors that encourage or hinder such learning. These reflections can then help the
teacher to understand her students' needs.

It therefore seems that personal feelings of incompetence and anxiety which have been
caused by rigidly formalist mathematics teaching may be turned to good account if handled
correctly, and need not be a liability at all.
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TEACHER PROFESSIONAL GROWTH PROCESSES

AND SOME OF THEIR INFLUENCING FACTORS

Andrea Peter

Institute for Didactics of Mathematics

Westialische Wilhelms-Universitat Miinster, Germany

The study of teacher professional development has frequently been limited in its subjects, its tools,
and the duration of the research. This paper describes some of the results of a study to examine.
teacher change through a multiple perspectives approach. The guiding aim of the study was the
comprehensive portrayal of the change process in teaching practice, knowledge and beliefs and
valued teaching outcomes as experienced by four junior secondary mathematics teachers from three
different schools who participated in the Australian ARTISM professional development program.
The four case studies identified a high degree of individuality of each change process that is
influenced by variables related to the teacher himself /herself, his /her school and the structure, content
and organisational conditions of the professional development enterprise itself.

Theoretical Background
The professional development process by which teachers change their classroom practices and their

knowledge and beliefs about their subject as well as their role as teachers is fundamentally a learning

process.

The identification of teacher change with a learning process has been explicitly modelled as "teacher

professional growth" (Clarke & Peter, 1993). The knowledge about the nature of this learning

process itself, the factors involved and their relation to and influence on each other is still incomplete.

Previous research in the area of professional development has identified three types of factors that

can influence the individual change process significantly:

1) Factors that are determined by the age-related life period of the teacher, his/her biography and

present cognitive-developmental stage (Oja, 1989) as well as teacher characteristics and responses

to innovation (Joyce & McKibbin, 1982; Doyle & Ponder, 1977);

2) Factors related to school culture and collegiality and the degree of support from the school

administration for professional development (McLaughlin 1991; Fullan, 1990 and 1988; Sparks

& Loucks-Horsley, 1990);

3) Factors related to the organisational and structural conditions of professional development

enterprises such as time, financial ressources, competencies of the staff developer(s) and the

content of the inservice program (Fullan, 1990; Little, 1984).

Most studies that investigate the professional development of teachers who were involved in an

inservice program rely mainly for their data on the teachers' retrospective impressions and

perceptions of the process and degree of their personal change (Loucks & Melle, 1982). The

teacher's perspective on the outcomes of a professional development program is only one of several

perspectives, although certainly an important one. For a comprehensive portrayal of the individual

change process, this study required access to the perspectives of all members of the community
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participant in this process of teacher change. The approach of this study is a multiple perspective on .

teacher change that focuses on the teacher and his/her perception of change, but also includes the

perspectives of the students, the mathematics coordinator, the school principal, the researcher, the

developer, and the educational consultant as well in order to provide a more detailed and more

comprehensive picture of the quality of the teacher change process.

The context of this study was the Australian ARTISM (Active and Reflective Teaching In Secondary

Mathematics) professional development program for secondary mathematics teachers. The program

was intended to make the participating teachers aware of current developments in the learning and

teaching of mathematics while acknowledging the factors inhibiting implementation and providing

appropriate support for individual teacher change processes. This support included school visits by

the presenters (who were also the program developers) between the seven ARTISM sessions to

discuss individual teacher experiences with new classroom strategies. The ARTISM program was

predicated on the belief of the program developers that change will arise from the classroom

experiences of teachers who have undertaken to field-test new techniques. Therefore the application

of the key content of the sessions in the teachers' own classrooms was an essential element of the

course (Clarke, Carlin, & Peter, 1992).

Conceptual Framework
The study seeks to gather information about the teacherchange process on three levels: (1) change in

their classroom practice, (2) change in their knowledge and beliefs about mathematics and the

teaching and learning of mathematics, and (3) change in valued outcomesin their classrooms. These

factors have been identified as analytic domains in a recent model of professional growth:

Figure 1

The Clarke-Peter model of professional growth (Clarke & Peter, 1993, p. 170)

Personal
Domain

External Source
of Information,

Stimulus
or Support

External
Domain

Domain of
Inference

Classroom
Experimentation

Domain of
Practice

(solid line = enactivemediating process; broken line = reflective mediating process)
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The Clarke-Peter model invokes two distinct categories of construct: analytic domains and mediating
processes.The four analytic domains which characterize the model are:

ThePersonal Domain Teacher Knowledge and Beliefs

Teaching practice is in large part the enactment of individual teacher's knowledge and beliefs
regarding their subject, effective instruction, student learning, and the socio-political environment of
the school setting. The Personal Domain is concerned with the knowledge and beliefs underlying.
practice.

The Domain of Practice - Classroom Experimentation

The enactment of teacher knowledge and beliefs takes the form of classroom practice. Where the
classroom situation is perceived as a problematic or challenging one, teacher classroom practice
becomes classroom experimentation.

The Domain of Inference - Valued Outcomes

Those professional outcomes to which the teacher attaches value constitute the mediating domain by
which classroom experimentation is translated into changed teacher knowledge and beliefs. These
valued outcomes may include student learning, teacher satisfaction, teacher planning effectiveness
and efficiency, reduced teacher classroom stress, and increased student and teacher classroom
enjoyment.

The External Domain Sources of Information, Stimulus or Support

Teacher classroom experimentation and teacher reflection may both be stimulated by external
sources. These external sources might be an inservice program, professional reading, faculty
meetings, or informal conversations with colleagues.

The mediating processes translate growth in one domain into another. These mediating processes can
be classified as being either enaction or reflection. The term "enaction" has been chosen to
distinguish the translation of a belief or a pedagogical model "into action" from simply "acting".
Acting occurs in the Domain of Practice, and each action represents the enactment of something a

teacher knows, believes or has experienced (Clarke & Peter, 1993, p. 169-170).

The perspectives which must contribute to the comprehensive portrayal of the change process can be
identified with the specific roles played by individuals within thechange community. Data collected
from each of these individuals offer a distinct perspective on each of the analytic domains listed
above. The members of this community, whose common focus is the realisation of teacher
professional growth, are listed in Table 1. Individuals can be characterized by their roles within the
change community, the perspective that they represent in terms of the change process, and the
significance of that perspective.
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Table 1

Multiple perspectives on teacher change and their significance (Peter & Clarke, 1993, p. 4)

Roles within the change
community

Perspectives on teacher
change

Significance

Teacher Active participant in the change Person whose learning is the

process object of study

Students Members of the group through Persons whose activities
whom the change process is embody a major goal of the

enacted change process

Subject Coordinator Curricular gatekeeper Person who initiates and
sustains change opportunities
within the subject domain

School Principal Administrative gatekeeper Person who authorizes access
to change opportunities and
affirms professional outcomes

Consultant Interpreter and facilitator Person who translates the
program's substance into
inservice practice

Program developer Defines the aims of change Original source of the external
stimulus embodied in the
program

Researcher Describes and analyses teacher Person whose concern is the

change processes monitoring of the change
process

Methodology
If the value of these multiple perspectives is to be realized, then research methods have to be

identified to access the insights, observations, and experiencesof all individuals listed in Table 1.

This study employs a variety of research techniques to do this.

The data collection commenced at the start of the development of the ARTISM program.

Observational data were gathered from those members of the change community involved in the

implementation of the program, and during the related school visits which occurred between the

inservice sessions.

Interview, questionnaire, and observational data focusing on four case study teachers from the three

participating schools and students from one of their mathematics classrooms were collected during

the implementation of the ARTISM program and for a period of twelve months after the official

program was finished.

331
3 323



A variety of different research instruments have been developed to take into account the preferences
that individuals might show in responding to these tasks. The body of instruments developed and
applied in the study include:

* structured interviews

(with teachers, principals, maths coordinators and program developers and the consultant);
* questionnaires with open-ended as well as multiple choice items

(completed by students and teachers);

* observations of inservice sessions, school visits and classrooms;

* teacher journal entries.

The four case studies yielded a comprehensive insight in the individual changes processes in terms of
their different qualities and structures in addition to a variety of factors that influence those changes
processes. This paper focuses only on some selected aspects of the individual changeprocesses that
were particularly highlighted through the multiple perspectives approaCh employed in this study.

Case Studies of Individual Change Processes
The Case of John Classroom Experimentation as a Stimulus for Change

John' sl mathematics teaching before his contact with the ARTISM program was characterized by a
teacher-centred classroom approach. The lessons were designed similarly and consisted of teacher
explanations on the board followed by individual student work out of the textbook.

For John the classroom experimentations required by the ARTISM program were a crucial stimulus
for change. While initially he was sceptical of changing his valued classroom practices, later after the
second ARTISM session he decided to explore some of the suggested strategies and was very
satisfied with the results. From that lesson onwards John continued with the exploration of new
strategies and ideas'. His attempt to carefully adapt, rather than to uncritically adopt the promoted
alternative strategies lead to the enhancement of his preferred classroom results. For example
classroom control was certainly an important issue for John. In implementing ARTISM ideas in his
teaching he was always conscious of maintaining classroom control. One of the main outcomes for
John was the experience that the changes in his classroom practice did not interfere with the control
of his class but enabled him and his students to extract greater enjoyment from their maths lessons.
John's changed maths classroom can be characterized as student- centred with the students working in
pairs or groups for most of the time on tasks that require them to apply mathematical skills and
knowledge to their daily life .

John's individual change process was based on changes in his classroom practice through the
exploration and implementation of ideas and strategies from the ARTISM program. He evaluated the
results of these explorations according to his valued outcomes in terms of his maths teaching and
found that the student learning did not suffer but even improved, that classroom control could be
maintained and that the students and he himself enjoyed the maths lessons much more than before.

I All teacher names have been changed to insure their anonymity.
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As a result of this he changed his knowledge and beliefs about mathematics teaching and learning

which lead him to rewrite the year 10 maths curriculum together with a colleague who had had similar

experiences. Furthermore he tried to adapt the assessment proceduresaccording to his changed maths

teaching and came up with a new assessment policy that is now applied in the whole school. Within

his school John became a leading figure in the reform of the school maths curriculum.

The Case of Anne - Perceived Structural and 'Organisational TeachingConditions Presenting a Barrier

to Change

Anne's professional development process due to her participation in the ARTISM course was

radically different compared with John's. Her maths classroom before ARTISM was based on

teacher explanations of the content and student work from a textbook. Like John originally Anne did

not perceive a personal need for professional development and for changing her maths teaching. She

took part in the program because the maths coordinator of her school expected her to participate.

From Anne's point of view structural and organisational conditions at her school were limiting

factors in terms of her maths teaching. She argued that the large classes with thirty and more

students, the attitude of the students ("the boys don't want to learn maths"), their intellectual abilities

and the lack of equipment and time stop her from changing her maths teaching. Although Anne trialed

some of the activities that were introduced during the ARTISM sessions, these explorations did not

lead to changes in her knowledge and beliefs about mathematicsteaching and learning.

The Case of Bill - Change as an Attempt to Adapt his Classroom Practice to Existing Knowledge and

Beliefs
Bill originally had been trained as a primary teacher and had worked in a primary school for the first

three years after his graduation. He is highly involved in many sporting activities and a trained

international tennis umpire. He decided to work, in a secondary schoolbecause thiS allowed him to

become involved in a higher level of school sport.

Working as a teacher in a secondary school Bill was struggling with a conflict between his

knowledge and beliefs about maths teaching and learning and his classroom practice. Through his

primary training he was already aware of the current approaches towards a reform in mathematics

teaching in Australia, but he had problems implementing his beliefs accordingly into his maths

teaching. Bill was very interested to participate in the ARTISM program. He found that his existing

knowledge and beliefs about the teaching and learning of mathematics were confirmed and

"refreshed" and he engaged in the exploration of the introduced classroom activities and strategies.

The results of these explorations matched his predetermined valued outcomes and encouraged him to

further explorations. For Bill the content of the ARTISM program had a stronger effect on a cognitive

than on a practical level. Bill always checked whether new ideas and strategies that were suggested

during the ARTISM course matched with his existing beliefs and valued outcomes before he

implemented them into his teaching. Other than John, Bill never tried to integrate and link the new

strategies and actici ties to an overall concept that underlies his maths teaching. Therefore his different
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approaches to change parts of his maths teaching were isolated from each other. Furthermore Bill did
not develop continuity in terms of the implementation of new strategies and activities.

The Case of Steve - Change as Adaptation to a Reformed Mathematics Curriculum

Steve was working at the same school as John. In his school Steve had the reputation of being a
brilliant mathematician, but especially prior to the ARTISM program Jane, the maths coordinator of
his school, was worried about Steve's lack of pedagogical content knowledge and pedagogical

knowledge. Jane had got the impression that Steve could not always relate to the needs of his year 7
students. Steve himself perceived a need for professional development and has articulated explicit

expectations in terms of his participation in the ARTISM course that all address pedagogical content
issues. Before Steve was ready to modify his classroom practice and to implement elements of the
ARTISM course he evaluated and expanded his knowledge and beliefs and also his valued outcomes
as a result of the information on teaching and learning mathematics provided by the ARTISM

program. A major factor that contributed to Steve's change process was the fact, that the Mathematics

curriculum at his school had been changed after the end of the ARTISM program. All year 7 units
had been rewritten by the maths coordinator, so Steve's classroom behaviour to a large degree was
guided by the new units and assessment practices. While ARTISM certainly impacted on Steve's
knowledge and beliefs, the change of his actual classroom practices was based on adaptations to the
reformed school mathematics curriculum.

Conclusion
All four teachers had the same external input for professional development through the ARTISM

program. Nevertheless their individual change processes vary depending on the level of support and

collegiality they experienced in their schools, their biography, their individual "ages and stages of
adult development" (Oja, 1989) in addition to their personal characteristics and responses to
innovation. Among the variety of factors influencing the individual teacher changeprocesses the level

of collegiality provided by their peers and the degree support of their principals seem to be critical
factors in terms of the individual development processes.

The case study data suggest an obvious link between the individual change processes and external

conditions determined by the school culture. Both the principal and mathematics coordinator at the
school where John and Steve work understood staff professional development as important aspect of

their responsibilities. They formally acknowledged the achievements related to the ARTISMprogram
of the participating teachers by providing time release and positive feedback. Furthermore they have

seen the involvement of their school in the ARTISM course as a crucial part of the internal school

development. Both encouraged and supported the reform of the school mathematics curriculum and

the school assessment policy initiated through John and his colleague Max by making these issues the

topic of staff meetings and staff professional development days. Ultimately Steve's change process

benefitted to a large degree from the changes in the maths curriculum and individual units.

Cooperation among teachers of the same subjects and year levels in the planning and teaching of their
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lessons is much appreciated and encouraged in this school. John and an his colleague Max have been

working together for many years and their cooperation is acknowledged in the time-table which

enables them to teach the same year level. The maths coordinator actively tried to engage in

cooperation with Steve (who was teaching in the same year level with her) trying to benefit from his

extraordinary content knowledge while offering him support with questions related to pedagogical

(content) knowledge.
The principals and maths coordinators and the school climate at the other two schools were much less

supportive in terms of the individual change processes of Anne and Bill. Both teachers lacked

opportunities to work together with colleagues and did not receive much support or
acknowledgement from the principal, because both principals did not feel responsible for the

individual change processes of their staff. While the maths coordinator at Bill's school tried to

establish a culture of support and shared goals among the maths staff to facilitate a better environment

for change, the maths coordinator at Anne's school understood teacher professional development as

an individual task for each teacher. Therefore he perceived that his responsibility as a faculty

coordinator was mainly to dissiminate information about available inservice activities and to

determine the staff who should attend a particular program or activity.
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ABSTRACT
Following Conney and Shealy (1994) it is indicated that a broader theoretical framework is

required in order to deal with the essential aspects of teaching mathematics. Such a framework
should relate to the goals and the problems of the profession as well as to psychological elements in
the cognitive and the affective domain. The paper presents and analyzes some teachers' views about
such essential aspects.

The number of studies about mathematics teachers is increasing. At PME 18, only, there were 2

working groups and 12 research reports which focused on mathematics teachers. This is, of course,

in addition to research reported in books (for instance: Grouws 1992, Houston 1990) and
mathematical education journals. Each study is carried out within a certain theoretical framework in

which the nature of mathematics or the nature of learning has a central role. Inevitably, such a

theoretical framework is a result of the researcher's preferences and values. I do not object this
tendency. On the contrary, I strongly support it. I mention it only because this fact is not
emphasized explicitly by most of the researchers. They aim to desirable outcomes in teacher

education as if "desirable" is absolute and does not depend on their own particular belief systems.

For instance, if a study focuses on a teacher's change in the direction of the socioconstructivist

approach to teaching (Boufi, 1994) then it is implicitly assumed that this approach is better than the

traditional approach. If a study focuses on teachers beliefs about the use of computers in

mathematics education (Bottino and Furinghetti, 1994) it is assumed that "teachers who are

interested in constructing knowledge find in computers answers to their needs" (p.118). Finally, if

a study focuses on the role of problem solving in a teacher's everyday practice (Fernandes, 1994) it

is assumed that problem solving is the essence of learning mathematics. Thus, an educational

research emerges, very often, out of the researcher's educational credo . This implies that if you do

not accept the constructivist paradigm, or if you have a formalistic approach to mathematics, or if

you do not believe that meaningful learning is important to our technocratic society which is based

mainly on technical training then the above studieS might become pointless for you.

This is true, of course, about this study as well. Its title is borrowed from Freudental (1973)

and it is assumed that teachers, perhaps not exactly as other professionals, should have, in addition

to the fact that teaching is their way to make their living, some educational philosophy, a belief that

they have some educational mission or a social destiny. All these will have certain impact on their
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teaching practices, as well as their beliefs about the nature of mathematics and about the nature of

learning. Since the teacher trainer community is interested in changes in the mathematics teaching

practices, it is important to map the above mentioned conceptions about mathematics teaching as an

"educational task." On the other hand, we all know that 'changing somebody's views and behavior

is not a simple task. It is hard, as we all know from therapy, even if somebody is interested in

changing themselves. Therefore, if they are not interested - change becomes almost an impossible

mission. In an ETS report (Focus, 1992,) the title of which is "Teachers: The Key to Success,"

Robert Davis (p.19) speaks about teacher development. "People don't understand what it is like,"

Davis says. "I tell people that this is a lot more like psychoanalysis than it is telling somebody a new

recipe...Our people have worked with some teachers for seven years now." Bearing this analogy in

mind I was looking for research and treatment frameworks borrowed from therapy. It seems to me

that the most suitable framework for research and treatment is the group therapy. The Webster's

Ninth New Collegiate Dictionary characterizes group therapy as a therapy "in which several patients

discuss and share their personal problems." If you take a way the words that have, for some

people, a negative connotation ("therapy," "patient") and replace them by words which are relevant

to our context you get: A framework in which several teachers discuss and share their
personal problems related to their profession. My belief was that such a framework would

help me to reveal the participants' views about problems in mathematics education and would be a

starting point for a future change in case a desirable interaction will take place. I called this
framework: A workshop for discussing problems in mathematics education. My research aims

were to expose teachers' views about the meaning of their professional lives and about their
problems.

Methodology
Two groups of teachers were formed. The first one was a group of 14 volunteers (10 females).

In order to form it, a letter of invitation to a workshop for discussing problems in mathematics

education was sent to about 200 high school teachers in Jerusalem. The second one was a group of

22 teachers (18 females) who participated in an in-service teacher training program. A compulsory

part of this program was the workshop for discussing problems in mathematics education. The

teaching experience in the two groups was between 5 to 30 years with a mean of 15 in the first

group and a mean of 19 in the second group. This is in contrast to samples investigated in most of

the studies on teachers where, usually, perspective teachers are involved. Each of the above groups

met 7 times. Each meeting lasted 90 minutes. The research tool was the group discussion: In order

to make the teachers talk about their problems I prepared a few questions which were supposed to

serve as a trigger. I asked the teachers to answer the questions in writing. My purpose in doing it

was to let everybody express their views and not only those who participated in the discussion. The

written answer also helped me to "navigate" the discussion. I tried to encourage someone, whose
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point of view was relevant, to elaborate on his or her written answer. Once the teachers started

talking I made myself passive and remained so, as long as the discussion went on and was relevant

to the main theme. The discussions were video-taped and transcribed. The written answers were

analyzed as well as the transcriptions of the video-tapes.

Results
In this section I will present analysis of some written answers as well as analysis of two excerpts

from the video-tapes.

A question: In your opinion, what are the most bothering problems in mathematics education?

This question was posed only to the first group, N = 14. The written answers were classified to

the following categories (each respondent stated more than one problem. The number in parenthesis

is the number of answers in the category):

1. Students' lack of motivation, anxiety and repulsion (13).

2. Lack of prerequisites from previous stages. Poor arithmetical and algebraic skills (10).

3. Teaching heterogeneous classes and the size of the classes (9).

4. Lack of time to cover the curriculum (6).

5. Students' lack of ability to cope with topics which require thought, abstraction and

imagination (5).

6. Bad text books (4).

7. Geometry and word problems (4)

8. The emphasis on mathematical techniques instead of mathematical thinking (3).

I have not mentioned categories which had only one answer. There were 4 like that. However, I

would like to mention 2 answers which seemed interesting to me. One of the teachers (female) said:

Mathematics should teach people how to think. I feel that this is a too heavy responsibility on my

weak shoulders. Another one (male) said: I do not know how to implement all the wonderful ideas

that are suggested in the pedagogical literature, how to avoid stagnation and how to create

motivation in my students. I consider these two answers as exceptional answers. They both

express self dissatisfaction which very often motivates people to improve - an everlasting project. In

the first statement, in my opinion, an "existential modesty" is expressed. In fact this is one of the

principles of the liberal education. When saying this I am using terminology borrowed from the

ethical domain and I no longer restrict myself to the cognitive domain. As -I claimed earlier,

research in mathematics education is determined very often by the researcher's preferences. A

distinction between the cognitive domain and the ethical domain seems to me quite artificial. If you

read carefully the Curriculum and Evaluation Standards (1989) you realize immediately that it is

impossible to distinguish between them. By the way, the above two teachers have extremely good

reputation as mathematics educators. I would like to elaborate now on the above 8 categories of

answers. I ordered them by their size. However, there is also a clear thematic direction in this
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order. They go from the everyday, immediately apparent problems to problems the characterization

of which depends on analysis and reflection. If you consider the community of mathematical

education researchers, as reflected in the research literature, you will probably found out that this

community is bothered mainly by cognitive problems. It does not ignore motivation but it is

implicitly assumed that the problem of motivation will be solved together with the solution of some

cognitive problems as intellectual curiosity, relevance to everyday life of the students or intellectual

challenge. One of the most bothering problems for mathematical education researchers is the quality

of learning. The fact that learning mathematics became procedural, rather than conceptual. Teaching

and learning mathematics have become an activity in which students try to acquire mathematical

procedures which will help them to solve routine problems in some tests, the purpose of which is to

select students for a higher stage of learning. Therefore, the community of teacher educators, which

is extremely dissatisfied with this tendency , emphasizes so strongly other elements in mathematics

learning such as problem solving and student construction of knowledge (for instance, Boufi, 1994;

Cooney&Shealy, 1994; Femandes&Vale, 1994). In the above group of teachers (N = 14) only 3

teachers related to the problem which is so central for the mathematics researcher community

(instead of mathematics we teach mathematical techniques, wrote one of the teachers). In this case, I

would like to avoid judgmental statement and only to point at the gap between the mathematics

teacher community and the mathematical education researcher community. Cooney&Shealy (1994)

advocated that teachers should be reflective. The above gap should call the mathematical education

researchers for reflection as well.

In the discussion that followed the written answers to the above question I presented the comment

about implementing the ideas of the pedagogical literature as a starting point. Here is one excerpt:

I: What are the wonderful pedagogical recommendations that you mentioned in your written

answer? Teacher 1: To motivate the student to become an active learner, to participate with the

teacher in knowledge construction, to solve problems and to test hypotheses. Teacher 2: What are

you talking about? I: He told you; to motivate the student to participate in knowledge construction

and so on. Teacher 2: We'll never cover the curriculum. Teacher 3: Our problem is that because of

the present situation we give up. Teacher 4: Yes. We do give up.

There are two types of reactions to the first teacher statement. In the first one you notice denial of

the pedagogical literature. Teacher 2 knew about it. However, he thought it was irrelevant. A

typical reaction of teachers who think that the mathematical education researchers have nothing to

offer to the field because they know nothing about the field. .The "wonderful ideas" cannot be

implemented because we, the teachers, have to cover the curriculum before we do anything else.

This is our real mission and therefore we do not have time to deal with all the "wonderful

recommendations of the pedagogical literature." This reaction is mixed with anger. The teacher is

angry with the mathematical education researchers who pretend to know how to deal with the field

problems but, as a matter of fact, have no idea what is really going on in the field. The reaction of
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teachers 3 and 4 is different. They also believe that it is hard to implement the recommendations of

the "pedagogical literature." Nevertheless, they are not hostile to mathematics educators. They

admit that the fact that nothing is done to improve the situation is due to their weakness. They gave

up. Thus, the two reactions differ from each other in the sense of taking responsibility. The first one

develops anger against the agents of change and improvement - the mathematical education

community. The second one takes responsibility and admits the teachers' weaknesses as a cause to

the fact that things do not improve. (In the above analysis we rely on some parts of the video-tape

which are not represented in the excerpts.)

A (two part) question: a) Why do we teach mathematics? b) What is really achieved by
mathematics teaching?

This question was presented to the above 2 groups (N = 14, 22) The classification of the

answers gave the following categories (the numbers in parenthesis indicate the numbers of answers

of this type in the two groups, respectively. Each teacher gave more than one answer to each

question). a) Why do we teach mathematics?

1. In order to develop thinking (mathematical, analytical , logical). (10, 16)

2. Mathematics is a tool in other disciplines. (7, 15)

3. General education. (5, 1)

4. Because it is interesting, beautiful and enjoyable. (3, 1)

5. It teaches accuracy and order. (3, 5)

6. It is a part of the matriculation exams. (1, 1)

7. It is a tool to solve everyday problems. (1, 0)

8. It develops certain virtues (as intellectual integrity, initiative, creativity, ability to cope with

challenges in life). (0, 5)

9. It is essential for survival in the in the society of our time. (0, 5)

10. I like to teach mathematics. (0, 1)

b) What is really achieved by mathematics teaching?

1. Development of thinking (mathematical, analytical, logical). (7, 8)

2. Acquisition of mathematical techniques. (4, 5)

3. The matriculation exam. (5, 4)

4. General education. (4, 2)

5. Decreasing mathematical anxiety. (5, 0)

6. Enjoyment. (1, 2)

About 2/3 of the answers in the 2 groups mentioned development of thinking as one of the goals

of teaching mathematics. But does not the mathematical education community expect every

mathematics teacher to say it? It is hard to tell why the other 1/3 did not mention it. It is possible

that some teachers are not aware of the educational potential of mathematics? On the other hand, it is

possible that they are aware of it, but also being aware that it is not achieved they avoid mentioning
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it. This possibility is well reflected when comparing the real achievements to the declared goals.

The ratios are 10:7 and 16:8 in the two groups, respectively. This implies that at least some

teachers are convinced that this goal is not achieved. Again, if we consider the views of the

mathematical education researcher community about this matter, at the current situation in typical

schools, we will realize that its majority does not believe that development of thinking has been

achieved. ( I cannot establish this claim here but even reform documents as the above mentioned

Curriculum and Evaluation Standards for School Mathematics (1989) and also Professional

Standards for Teaching Mathematics ((1990) indicate that the current situation is quite poor and

therefore a visionary reform is urgently needed.) If this is the case and the mathematics teachers are

not blind then two different reactions are possible. The first one is frustration and the second one

is denial. I claim that both occur quite often in the mathematics teacher community. Usually, people

do not like to admit that they are frustrated. Especially, if the frustration is associated their

profession. On the other hand, there is a tendency to state sublime principles as goals of

somebody's profession. Thus, you can see unrealistic claims about the goals of teaching

mathematics as in categories 8 and 9 above and unrealistic achievements as in category 5. At the

same time you can see an attempt to deny prosaic goals as in category 7 or prosaic achievements as

in categories 2 and 3. Only about 1/3 in the first group and about 1/5 in the second group mentioned

mathematical technique acquisition and matriculation exam as achievements of teaching mathematics.

However, everybody in the educational system (students and teachers) know that almost all the

efforts in the classrooms and in homework assignments at the high school level are directed to the

matriculation exam, for which mathematical techniques are the most crucial element. Since this is

not such a sublime goal many teachers avoid mentioning it as an achievement. The reason I have

presented the results of the two groups separately is that, as a moderator, I felt the two groups were

different. Is that difference reflected also in the written answers? It is not so simple to tell, also

because the samples are quite small, as in many studies on teachers. Therefore, the following claim

should be considered with some caution. The two groups are quite similar in stating the goals of

mathematics which are within the consensus (categories 1 and 2). There is a difference in

categories which are less central (3, 8 and 9). In the second group there is a tendency toward a

slightly exaggerated rhetoric (intellectual integrity, survival) whereas in the first group the tendency

is toward a less "loaded" vocabulary (general education). On the other hand, in stating the

achievements there is a tendency in the second group to be more positive (categories 1, 4 and 5). If

this is the case, has the fact that the first group was a volunteer group (namely, people who really

cared about their profession) has something to do with it? One answer, 1 like to teach mathematics,

deserves a special attention. It relates to the personal aspect of the professional life, an aspect which

is usually abandoned when educators are concerned. Would not a declaration 1 like 'to be a

mathematics teacher more desirable for the educational system than some of the above rhetorical

statements?
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Here is another excerpt from the discussion that followed the written answers.

I: Let's ignore for a moment the restrictions imposed on us by the educational system and talk

about things that we would like to do in case there are no restrictions. Teacher 2: Alright. Each

year I devote one lesson to self-learning. I tell them to open the book on a certain page; there is a

theorem on this page. I give them instructions how to prove it. They get working sheets. With

one class I failed even with this. So, I told them: let's play games the same way as the Scouts. I

brought them some puzzles. For instance, given a set of numbers - what is the relation between the

numbers? I did it with weak students, usually, they refuse to learn. They were turned on by this .

Please, they said, bring us this stuff each lesson. I: do you do this only once a year? Teacher 2: If
I do it once a year I am happy. Teacher 3 (ironically): Activities like this do not make the students

virtuosos of exam questions. They do not bring them closer to the highest mark they can get on the

matriculation exam. On the matriculation exams, questions which require real mathematical thinking

never occur. Teacher 4: And if they occur everybody will scream that there is no time to teach

mathematical thinking. I: The moment Ron (teacher I in the above first excerpt) started to speak he

aroused strong objection, but after a few minutes I realized that , as a matter of fact , you agree with

him. Teacher 4 (the one who claimed above that teaching people how to think was too heavy

responsibility for her): / think it is pretentious to think that we can teach 11-th graders how to think.

This is something that should have been taught to them immediately after they were born. The goal

which I want to achieve is that students will know that there are information sources, that they have

access to these sources and that they have the tools to use them. This is what I know. I: If I
understood you correctly, teaching how to think is not a task that you are ready to undertake.

Teacher 4: I do not want to be blamed in case I fail. Teacher 5: The trouble is that the majority of

the students have prejudice against mathematics. This is a result of the fact that at the elementary

level the teachers do not know how to teach. If mathematics were taught in a more enjoyable way

then the students would have come to the junior high level with better attitude to mathematics.

It turns out that teacher 2, who acted in the beginning of the discussion as if he knew nothing

about "wonderful pedagogical ideas", actually knows something about them. His denial in the

beginning was a kind of protest. When he eventually admits that he uses some alternative

pedagogy, again one can notice anger in his reaction (if I do it once a year 1 am happy). Here the

anger is against the educational system by which his teaching style is determined. He knows how to

motivate even weak students but because of the educational constraints he can do it only once a year.

My comment as a moderator indicated lack of awareness in some of the teachers. In the beginning

of the discussion some of them did not distinguish between what they would like to do in case there

are no external constraints and between what they can do under these constraints. This might cause

unconscious frustration or unconscious anger. The workshop can serve as a channel to express

anger and frustration, something which is recommended by some psychologists. Notice the

comments of teacher 4. Her approach represent an anti-rhetorical attitude. If you do not undertake
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pretentious missions you do not fail and thus , you avoid the gap between goals an achievements.

Notice also the tendency of teacher 5 to blame the elementary level of the illnesses of the secondary

level. The analysis of the video-taped discussions showed increasing awareness of the problems,

awareness of different views and also more harmonious conceptions of the goals of mathematics

teaching.

Conclusion
The aim of this study was to better understand the professional life of mathematics teachers. It

was indicated that a conceptual framework to deal with this theme should include general

psychological notions. Cooney and Shealy (1994), for instance, used the notions reflective and

adaptive . In addition I suggested to use frustration, anger, denial, awareness, credo and more.

The findings and the analysis point at some inner conflicts that mathematics teachers have and also at

a gap between the ways the mathematics teacher community and the mathematical education

researcher community view mathematics teaching and learning.
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